Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 30;71(Pt 5):m126. doi: 10.1107/S2056989015007318

Crystal structure of bis­[4-(di­methyl­amino)­pyridine-κN 1]bis­(methanol-κO)bis­(thio­cyanato-κN)manganese(II)

Stefan Suckert a,*, Inke Jess a, Christian Näther a
PMCID: PMC4420091  PMID: 25995897

Abstract

The whole mol­ecule of the title compound, [Mn(NCS)2(CH3OH)2(C5H6N2)2], is generated by inversion symmetry. The MnII ion, which is located on an inversion center, is coordinated by two 4-(di­methyl­amino)­pyridine ligands, two methanol ligands and two terminally N-bonded thio­cyanate anions, forming a slightly distorted octa­hedron. In the crystal, mol­ecules are linked by O—H⋯S hydrogen bonds, forming chains extending along the a-axis direction.

Keywords: crystal structure, discrete complex, octa­hedral coordination, hydrogen bonding

Related literature  

For the structure of another discrete complex with 4-(di­methyl­amino)­pyridine and thio­cyanate ligands, see: Chen et al. (2007). For general background to this work, see: Näther et al. (2013).graphic file with name e-71-0m126-scheme1.jpg

Experimental  

Crystal data  

  • [Mn(NCS)2(CH4O)2(C5H6N2)2]

  • M r = 479.52

  • Triclinic, Inline graphic

  • a = 7.0771 (7) Å

  • b = 8.1586 (8) Å

  • c = 10.6491 (10) Å

  • α = 76.381 (11)°

  • β = 81.672 (11)°

  • γ = 79.809 (11)°

  • V = 584.72 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 180 K

  • 0.16 × 0.10 × 0.04 mm

Data collection  

  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) T min = 0.903, T max = 0.959

  • 4585 measured reflections

  • 2459 independent reflections

  • 1885 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.100

  • S = 1.04

  • 2459 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015007318/sj5446sup1.cif

e-71-0m126-sup1.cif (168.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007318/sj5446Isup2.hkl

e-71-0m126-Isup2.hkl (135.2KB, hkl)

. DOI: 10.1107/S2056989015007318/sj5446fig1.tif

Structure of the title complex with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: i = −x+1,-y,-z+1.

a,c . DOI: 10.1107/S2056989015007318/sj5446fig2.tif

Crystal structure of the title compound viewed perpendicular to the crystallographic a,c plane.

CCDC reference: 1059105

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O31H1OS1i 0.85 2.42 3.2409(18) 161

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge financial support by the DFG (project number NA 720/5-1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

supplementary crystallographic information

S1. Synthesis and crystallization

MnSO4.H2O was purchased from Merck and 4-(di­methyl­amino)­pyridine and Ba(NCS)2.3 H2O were purchased from Alfa Aesar. Mn(NCS)2 was synthesized by stirring 17.97 g (58.44 mmol) Ba(NCS)2.3 H2O and 9.88 g (58.44 mmol) MnSO4.H2O in 300 mL H2O at room temperature for three hours. The white precipitate of BaSO4 was filtered of and the solvent removed with a rotary evaporator. The homogeneity of the product was investigated by X-ray powder diffraction and elemental analysis. The title compound was prepared by the reaction of (0.18 mmol) 30.8 mg Mn(NCS)2 and (0.3 mmol) 36.7 mg 4-(di­methyl­amino)­pyridine in 1.0 mL methanol at room temperature. After a few days colorless plate shaped crystals of the title compound were obtained.

S2. Refinement

The C—H H atoms were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.95 Å for aromatic and and C—H = 0.98 Å for methyl H atoms. The O—H H atom was located in a difference map, its bond length set to ideal values of 0.85 Å and refined with Uiso(H) = 1.5 Ueq(O)using a riding model.

Figures

Fig. 1.

Fig. 1.

Structure of the title complex with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: i = -x+1,-y,-z+1.

Fig. 2.

Fig. 2.

Crystal structure of the title compound viewed perpendicular to the crystallographic a,c plane.

Crystal data

[Mn(NCS)2(CH4O)2(C5H6N2)2] Z = 1
Mr = 479.52 F(000) = 251
Triclinic, P1 Dx = 1.362 Mg m3
a = 7.0771 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.1586 (8) Å Cell parameters from 4585 reflections
c = 10.6491 (10) Å θ = 2.6–27.0°
α = 76.381 (11)° µ = 0.77 mm1
β = 81.672 (11)° T = 180 K
γ = 79.809 (11)° Plate, colorless
V = 584.72 (10) Å3 0.16 × 0.10 × 0.04 mm

Data collection

Stoe IPDS-1 diffractometer 1885 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.039
phi scans θmax = 27.0°, θmin = 2.6°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) h = −9→9
Tmin = 0.903, Tmax = 0.959 k = −10→10
4585 measured reflections l = −13→13
2459 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0598P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2459 reflections Δρmax = 0.30 e Å3
133 parameters Δρmin = −0.59 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.5000 0.0000 0.5000 0.02111 (15)
N1 0.6294 (3) 0.0926 (3) 0.63997 (19) 0.0312 (5)
C1 0.7395 (3) 0.1199 (3) 0.7004 (2) 0.0236 (5)
S1 0.89299 (9) 0.15954 (10) 0.78630 (6) 0.0394 (2)
O31 0.2205 (2) 0.1737 (2) 0.53900 (16) 0.0339 (4)
H1O 0.1462 0.1444 0.6079 0.051*
C31 0.0945 (4) 0.2643 (4) 0.4439 (3) 0.0486 (7)
H31A −0.0136 0.3337 0.4847 0.073*
H31B 0.0448 0.1828 0.4074 0.073*
H31C 0.1659 0.3386 0.3743 0.073*
N11 0.5945 (3) 0.2090 (2) 0.33954 (17) 0.0222 (4)
N12 0.7263 (3) 0.6192 (2) 0.03652 (18) 0.0274 (4)
C11 0.5795 (3) 0.3682 (3) 0.3576 (2) 0.0264 (5)
H11 0.5369 0.3866 0.4427 0.032*
C12 0.6210 (3) 0.5063 (3) 0.2624 (2) 0.0252 (5)
H12 0.6057 0.6157 0.2825 0.030*
C13 0.6867 (3) 0.4861 (3) 0.1345 (2) 0.0210 (4)
C14 0.7077 (3) 0.3182 (3) 0.1162 (2) 0.0230 (4)
H14 0.7554 0.2942 0.0334 0.028*
C15 0.6594 (3) 0.1895 (3) 0.2177 (2) 0.0235 (5)
H15 0.6727 0.0783 0.2011 0.028*
C16 0.6858 (4) 0.7919 (3) 0.0569 (3) 0.0353 (6)
H16A 0.7210 0.8713 −0.0243 0.053*
H16B 0.7612 0.8015 0.1244 0.053*
H16C 0.5479 0.8196 0.0844 0.053*
C17 0.7938 (3) 0.5957 (3) −0.0944 (2) 0.0309 (5)
H17A 0.8140 0.7059 −0.1514 0.046*
H17B 0.6972 0.5482 −0.1267 0.046*
H17C 0.9158 0.5171 −0.0934 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0216 (2) 0.0237 (3) 0.0185 (2) −0.00575 (18) 0.00127 (17) −0.00564 (18)
N1 0.0330 (10) 0.0364 (12) 0.0282 (10) −0.0112 (9) −0.0016 (8) −0.0117 (9)
C1 0.0254 (11) 0.0242 (11) 0.0201 (10) −0.0035 (8) 0.0040 (8) −0.0067 (9)
S1 0.0261 (3) 0.0703 (5) 0.0288 (3) −0.0110 (3) 0.0005 (2) −0.0240 (3)
O31 0.0250 (8) 0.0444 (11) 0.0258 (8) 0.0030 (7) 0.0033 (6) −0.0046 (8)
C31 0.0373 (15) 0.062 (2) 0.0343 (14) 0.0113 (13) −0.0022 (11) −0.0017 (13)
N11 0.0272 (9) 0.0210 (9) 0.0188 (9) −0.0037 (7) 0.0014 (7) −0.0070 (7)
N12 0.0300 (10) 0.0241 (10) 0.0248 (10) −0.0039 (8) 0.0015 (8) −0.0017 (8)
C11 0.0325 (12) 0.0263 (12) 0.0210 (11) −0.0043 (9) 0.0028 (8) −0.0100 (9)
C12 0.0306 (11) 0.0201 (11) 0.0267 (11) −0.0032 (9) −0.0011 (9) −0.0100 (9)
C13 0.0143 (9) 0.0245 (11) 0.0238 (10) −0.0031 (8) −0.0019 (7) −0.0040 (9)
C14 0.0205 (10) 0.0270 (11) 0.0210 (10) −0.0009 (8) 0.0022 (8) −0.0090 (9)
C15 0.0222 (10) 0.0242 (11) 0.0258 (11) −0.0021 (8) 0.0013 (8) −0.0119 (9)
C16 0.0405 (14) 0.0234 (12) 0.0399 (14) −0.0064 (10) −0.0011 (11) −0.0034 (11)
C17 0.0274 (11) 0.0402 (14) 0.0217 (11) −0.0070 (10) −0.0001 (9) 0.0001 (10)

Geometric parameters (Å, º)

Mn1—N1i 2.192 (2) N12—C16 1.448 (3)
Mn1—N1 2.192 (2) N12—C17 1.452 (3)
Mn1—N11 2.2302 (17) C11—C12 1.370 (3)
Mn1—N11i 2.2302 (17) C11—H11 0.9500
Mn1—O31 2.2676 (17) C12—C13 1.412 (3)
Mn1—O31i 2.2676 (17) C12—H12 0.9500
N1—C1 1.160 (3) C13—C14 1.408 (3)
C1—S1 1.634 (2) C14—C15 1.368 (3)
O31—C31 1.429 (3) C14—H14 0.9500
O31—H1O 0.8500 C15—H15 0.9500
C31—H31A 0.9800 C16—H16A 0.9800
C31—H31B 0.9800 C16—H16B 0.9800
C31—H31C 0.9800 C16—H16C 0.9800
N11—C11 1.341 (3) C17—H17A 0.9800
N11—C15 1.349 (3) C17—H17B 0.9800
N12—C13 1.355 (3) C17—H17C 0.9800
N1i—Mn1—N1 180.0 C13—N12—C17 121.3 (2)
N1i—Mn1—N11 89.19 (7) C16—N12—C17 117.81 (19)
N1—Mn1—N11 90.81 (7) N11—C11—C12 124.8 (2)
N1i—Mn1—N11i 90.81 (7) N11—C11—H11 117.6
N1—Mn1—N11i 89.19 (7) C12—C11—H11 117.6
N11—Mn1—N11i 180.0 C11—C12—C13 120.0 (2)
N1i—Mn1—O31 90.50 (7) C11—C12—H12 120.0
N1—Mn1—O31 89.50 (7) C13—C12—H12 120.0
N11—Mn1—O31 89.07 (6) N12—C13—C14 122.6 (2)
N11i—Mn1—O31 90.93 (6) N12—C13—C12 122.2 (2)
N1i—Mn1—O31i 89.50 (7) C14—C13—C12 115.22 (19)
N1—Mn1—O31i 90.50 (7) C15—C14—C13 120.1 (2)
N11—Mn1—O31i 90.93 (6) C15—C14—H14 120.0
N11i—Mn1—O31i 89.07 (6) C13—C14—H14 120.0
O31—Mn1—O31i 180.0 N11—C15—C14 124.7 (2)
C1—N1—Mn1 162.79 (19) N11—C15—H15 117.6
N1—C1—S1 179.4 (2) C14—C15—H15 117.6
C31—O31—Mn1 125.44 (16) N12—C16—H16A 109.5
C31—O31—H1O 105.1 N12—C16—H16B 109.5
Mn1—O31—H1O 119.1 H16A—C16—H16B 109.5
O31—C31—H31A 109.5 N12—C16—H16C 109.5
O31—C31—H31B 109.5 H16A—C16—H16C 109.5
H31A—C31—H31B 109.5 H16B—C16—H16C 109.5
O31—C31—H31C 109.5 N12—C17—H17A 109.5
H31A—C31—H31C 109.5 N12—C17—H17B 109.5
H31B—C31—H31C 109.5 H17A—C17—H17B 109.5
C11—N11—C15 115.11 (18) N12—C17—H17C 109.5
C11—N11—Mn1 120.90 (14) H17A—C17—H17C 109.5
C15—N11—Mn1 123.89 (15) H17B—C17—H17C 109.5
C13—N12—C16 120.6 (2)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O31—H1O···S1ii 0.85 2.42 3.2409 (18) 161

Symmetry code: (ii) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5446).

References

  1. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Chen, F.-J., Liu, G.-Q. & Zeng, Z.-Z. (2007). Anal. Sci. X, 23, x253–x254.
  3. Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  6. Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015007318/sj5446sup1.cif

e-71-0m126-sup1.cif (168.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007318/sj5446Isup2.hkl

e-71-0m126-Isup2.hkl (135.2KB, hkl)

. DOI: 10.1107/S2056989015007318/sj5446fig1.tif

Structure of the title complex with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: i = −x+1,-y,-z+1.

a,c . DOI: 10.1107/S2056989015007318/sj5446fig2.tif

Crystal structure of the title compound viewed perpendicular to the crystallographic a,c plane.

CCDC reference: 1059105

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES