Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 30;71(Pt 5):o354–o355. doi: 10.1107/S2056989015008002

Crystal structure of 3-bromo­methyl-2-chloro-6-(di­bromo­meth­yl)quinoline

Kasirajan Gayathri a, Palathurai S Mohan a,*, Judith A K Howard b, Hazel A Sparkes b,c
PMCID: PMC4420095  PMID: 25995945

Abstract

In the title compound, C11H7Br3ClN, the quinoline ring system is approximately planar (r.m.s. = 0.011 Å). In the crystal, mol­ecules are linked by C—H⋯Br inter­actions forming chains along [10-1]. The chains are linked by C—H⋯π and π–π inter­actions involving inversion-related pyridine rings [inter­centroid distance = 3.608 (4) Å], forming sheets parallel to (10-1). Within the sheets, there are two significant short inter­actions involving a Br⋯Cl contact of 3.4904 (18) Å and a Br⋯N contact of 3.187 (6) Å, both of which are significantly shorter than the sum of their van der Waals radii.

Keywords: crystal structure, quinoline, bromo­quinolines, halogen–halogen contacts, Br⋯Cl contacts, Br⋯N contacts, C—H⋯Br hydrogen bonds, π–π inter­actions

Related literature  

The title compound is an important inter­mediate in the manufacture of materials such as organic light-emitting devices. For the synthesis of the title compound, see: Jones (1977); Lyle et al. (1972). For the biological activity of quinoline derivatives, see: Chauhan & Srivastava (2001); Ferrarini et al. (2000); Chen et al. (2001); Sahin et al. (2008).graphic file with name e-71-0o354-scheme1.jpg

Experimental  

Crystal data  

  • C11H7Br3ClN

  • M r = 428.36

  • Monoclinic, Inline graphic

  • a = 8.9042 (5) Å

  • b = 9.3375 (4) Å

  • c = 15.5107 (7) Å

  • β = 104.553 (5)°

  • V = 1248.23 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.88 mm−1

  • T = 120 K

  • 0.42 × 0.36 × 0.30 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.056, T max = 0.153

  • 8597 measured reflections

  • 2259 independent reflections

  • 1889 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.143

  • S = 1.09

  • 2259 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −1.19 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989015008002/su5096sup1.cif

e-71-0o354-sup1.cif (333.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008002/su5096Isup2.hkl

e-71-0o354-Isup2.hkl (124.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008002/su5096Isup3.cml

. DOI: 10.1107/S2056989015008002/su5096fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015008002/su5096fig2.tif

A view along the a axis of the crystal packing of the title compound. The C—H⋯Br hydrogen bonds, C—H⋯π inter­actions (Table 1) and the Br⋯Cl and Br⋯N short contacts are shown as dashed lines.

CCDC reference: 902598

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg2 is the centroid of the C4C9 ring.

DHA DH HA D A DHA
C11H11Br1i 1.00 2.92 3.709(8) 137
C10H10B Cg2ii 0.99 2.70 3.438(8) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HAS is grateful to the Leverhulme Trust and Durham University for financial support.

supplementary crystallographic information

S1. Synthesis and crystallization

The title compound was prepared in line with literature methods (Jones, 1977; Lyle et al., 1972). 2-Chloro-3,6-di­methyl-quinoline (0.001 mole) was dissolved in CCl4. To this benzoyl peroxide (50 mg) was added and the mixture was stirred under ice-cold conditions. To this mixture N-bromo­succinimide (0.005 mole) was added portion wise. The whole mixture was further stirred under ice-cold condition for 1 h. The reaction mixture was then refluxed for about 10 hours. After completion of the reaction, the succinimide was removed (it was insoluble in CCl4) by filtration and washed with 20 ml of CCl4. The contents of the filtrate were reduced to half, and the residue was chromatographed on silica gel using petroleum ether and ethyl acetate as eluent (99:1), which gave the titled product (yield: 52%). The white solid obtained was then recrystallized using acetone yielding colourless block-like crystals.

S2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were included in calculated positions and refined using a riding model: C—H = 0.95 - 1.0 Å with Uiso(H) = 1.2Ueq(C). The highest peak in the final difference Fourier map (1.654 eÅ-3) is close to atom Cl1. Attempts to split this atom were unsuccessful.

S3. Structural commentary

The presence of the quinoline skeleton in the frameworks of pharmacologically active compounds and natural products has spurred on the development of different strategies for their synthesis (Chauhan et al., 2001; Ferrarini et al., 2000; Chen et al., 2001). Bromo­quinolines have been of inter­est for chemists as precursors for heterocyclic compounds with multifunctionality, giving accessibility to a wide variety of compounds. These building blocks have been used in medicinal chemistry as starting materials for numerous compounds with pharmacological activity (Sahin et al., 2008).

The molecular structure of the title compound is shown in Fig. 1. The quinoline ring is planar (r.m.s. = 0.011 Å).

In the crystal, molecules are linked by C—H···Br inter­actions forming chains along [101]; Table 1 and Fig. 2. The chains are linked by C—H···π (Table 1), and π-π inter­actions involving inversion related pyridine rings (N1/C1—C5) with an inter-centroid distance of 3.608 (4) Å, forming sheets parallel to (101). Within the sheets, there are two significant short inter­actions: A Br1···Cli contact of 3.4904 (18) Å and a Br3···Nii contact of 3.187 (6) Å [symmetry codes: (i) -x+3/2, y-1/2, -z+3/2; (ii) x-1/2, -y+3/2, z-1/2], both are significantly shorter than the sum of their van der Waals radii [1.85 Å for Br; 1.75 Å for Cl; 1.55 Å for N; PLATON (Spek, 2009)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view along the a axis of the crystal packing of the title compound. The C—H···Br hydrogen bonds, C—H···π interactions (Table 1) and the Br···Cl and Br···N short contacts are shown as dashed lines.

Crystal data

C11H7Br3ClN F(000) = 808
Mr = 428.36 Dx = 2.279 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.9042 (5) Å Cell parameters from 4382 reflections
b = 9.3375 (4) Å θ = 2.6–29.0°
c = 15.5107 (7) Å µ = 9.88 mm1
β = 104.553 (5)° T = 120 K
V = 1248.23 (11) Å3 Block, colourless
Z = 4 0.42 × 0.36 × 0.30 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer 2259 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1889 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 16.1511 pixels mm-1 θmax = 25.3°, θmin = 2.4°
ω scans h = −10→10
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) k = −11→11
Tmin = 0.056, Tmax = 0.153 l = −18→12
8597 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0713P)2 + 10.6242P] where P = (Fo2 + 2Fc2)/3
2259 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 1.65 e Å3
0 restraints Δρmin = −1.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.63474 (10) 0.04489 (9) 0.60991 (6) 0.0370 (3)
Br3 0.45280 (10) 0.74291 (9) 0.12751 (6) 0.0381 (3)
Br2 0.70035 (11) 0.53886 (11) 0.08299 (6) 0.0429 (3)
Cl1 0.8069 (2) 0.38929 (19) 0.67965 (10) 0.0226 (4)
N1 0.7951 (7) 0.4817 (7) 0.5207 (4) 0.0242 (13)
C1 0.7245 (8) 0.3973 (8) 0.5630 (4) 0.0215 (15)
C2 0.5903 (8) 0.3156 (7) 0.5249 (4) 0.0179 (14)
C3 0.5309 (8) 0.3292 (7) 0.4361 (5) 0.0201 (14)
H3 0.4411 0.2763 0.4074 0.024*
C4 0.6012 (8) 0.4213 (7) 0.3857 (4) 0.0175 (14)
C5 0.7359 (8) 0.4957 (8) 0.4305 (5) 0.0197 (14)
C6 0.8084 (8) 0.5892 (9) 0.3828 (5) 0.0274 (17)
H6 0.8991 0.6397 0.4129 0.033*
C7 0.7505 (9) 0.6079 (9) 0.2946 (5) 0.0279 (17)
H7 0.8002 0.6722 0.2631 0.034*
C8 0.6160 (8) 0.5326 (8) 0.2483 (5) 0.0217 (15)
C9 0.5450 (8) 0.4423 (7) 0.2927 (4) 0.0201 (14)
H9 0.4555 0.3916 0.2612 0.024*
C10 0.5174 (9) 0.2212 (8) 0.5792 (5) 0.0234 (15)
H10A 0.4102 0.1981 0.5456 0.028*
H10B 0.5120 0.2718 0.6344 0.028*
C11 0.5499 (9) 0.5552 (8) 0.1511 (5) 0.0250 (16)
H11 0.4683 0.4809 0.1295 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0423 (5) 0.0311 (5) 0.0363 (5) 0.0018 (4) 0.0073 (4) 0.0085 (3)
Br3 0.0415 (5) 0.0292 (5) 0.0416 (5) 0.0098 (4) 0.0068 (4) 0.0091 (3)
Br2 0.0437 (5) 0.0546 (6) 0.0369 (5) 0.0031 (4) 0.0225 (4) −0.0033 (4)
Cl1 0.0252 (9) 0.0296 (9) 0.0114 (7) −0.0033 (7) 0.0013 (6) 0.0017 (6)
N1 0.022 (3) 0.025 (3) 0.024 (3) −0.001 (3) 0.003 (2) 0.000 (3)
C1 0.020 (4) 0.026 (4) 0.018 (3) 0.001 (3) 0.005 (3) −0.001 (3)
C2 0.019 (3) 0.012 (3) 0.023 (3) 0.002 (3) 0.007 (3) 0.002 (3)
C3 0.020 (3) 0.012 (3) 0.027 (4) 0.003 (3) 0.004 (3) −0.001 (3)
C4 0.017 (3) 0.013 (3) 0.024 (3) 0.001 (3) 0.008 (3) −0.002 (3)
C5 0.019 (3) 0.020 (3) 0.021 (3) 0.002 (3) 0.005 (3) 0.000 (3)
C6 0.018 (4) 0.030 (4) 0.031 (4) −0.003 (3) 0.000 (3) −0.002 (3)
C7 0.023 (4) 0.033 (4) 0.029 (4) −0.007 (3) 0.008 (3) 0.004 (3)
C8 0.022 (4) 0.018 (4) 0.026 (4) 0.005 (3) 0.010 (3) 0.002 (3)
C9 0.021 (4) 0.016 (3) 0.020 (3) 0.001 (3) −0.001 (3) 0.000 (3)
C10 0.024 (4) 0.023 (4) 0.025 (4) 0.003 (3) 0.008 (3) 0.003 (3)
C11 0.030 (4) 0.021 (4) 0.026 (4) −0.001 (3) 0.009 (3) 0.004 (3)

Geometric parameters (Å, º)

Br1—C10 1.944 (7) C4—C9 1.417 (9)
Br3—C11 1.948 (7) C5—C6 1.404 (11)
Br2—C11 1.910 (8) C6—C7 1.345 (10)
Cl1—C1 1.776 (7) C6—H6 0.9500
N1—C1 1.286 (10) C7—C8 1.419 (10)
N1—C5 1.371 (9) C7—H7 0.9500
C1—C2 1.416 (10) C8—C9 1.343 (10)
C2—C3 1.352 (10) C8—C11 1.489 (10)
C2—C10 1.478 (10) C9—H9 0.9500
C3—C4 1.409 (10) C10—H10A 0.9900
C3—H3 0.9500 C10—H10B 0.9900
C4—C5 1.409 (10) C11—H11 1.0000
C1—N1—C5 117.8 (6) C6—C7—H7 119.7
N1—C1—C2 126.0 (6) C8—C7—H7 119.7
N1—C1—Cl1 114.6 (5) C9—C8—C7 119.9 (7)
C2—C1—Cl1 119.5 (5) C9—C8—C11 119.4 (7)
C3—C2—C1 116.6 (6) C7—C8—C11 120.7 (7)
C3—C2—C10 121.5 (6) C8—C9—C4 121.2 (6)
C1—C2—C10 121.9 (6) C8—C9—H9 119.4
C2—C3—C4 120.5 (6) C4—C9—H9 119.4
C2—C3—H3 119.8 C2—C10—Br1 111.0 (5)
C4—C3—H3 119.8 C2—C10—H10A 109.4
C5—C4—C3 118.0 (6) Br1—C10—H10A 109.4
C5—C4—C9 118.2 (6) C2—C10—H10B 109.4
C3—C4—C9 123.8 (6) Br1—C10—H10B 109.4
N1—C5—C6 119.2 (6) H10A—C10—H10B 108.0
N1—C5—C4 121.2 (6) C8—C11—Br2 113.3 (5)
C6—C5—C4 119.6 (6) C8—C11—Br3 111.2 (5)
C7—C6—C5 120.5 (7) Br2—C11—Br3 107.9 (3)
C7—C6—H6 119.8 C8—C11—H11 108.1
C5—C6—H6 119.8 Br2—C11—H11 108.1
C6—C7—C8 120.6 (7) Br3—C11—H11 108.1
C5—N1—C1—C2 0.4 (11) N1—C5—C6—C7 −178.3 (7)
C5—N1—C1—Cl1 −178.6 (5) C4—C5—C6—C7 −0.2 (11)
N1—C1—C2—C3 −0.7 (11) C5—C6—C7—C8 −0.5 (12)
Cl1—C1—C2—C3 178.3 (5) C6—C7—C8—C9 0.4 (12)
N1—C1—C2—C10 180.0 (7) C6—C7—C8—C11 178.8 (7)
Cl1—C1—C2—C10 −1.0 (9) C7—C8—C9—C4 0.5 (11)
C1—C2—C3—C4 −0.2 (10) C11—C8—C9—C4 −177.9 (6)
C10—C2—C3—C4 179.1 (6) C5—C4—C9—C8 −1.2 (10)
C2—C3—C4—C5 1.2 (10) C3—C4—C9—C8 179.4 (7)
C2—C3—C4—C9 −179.4 (7) C3—C2—C10—Br1 103.9 (7)
C1—N1—C5—C6 178.7 (7) C1—C2—C10—Br1 −76.8 (8)
C1—N1—C5—C4 0.7 (10) C9—C8—C11—Br2 −131.1 (6)
C3—C4—C5—N1 −1.5 (10) C7—C8—C11—Br2 50.5 (8)
C9—C4—C5—N1 179.1 (6) C9—C8—C11—Br3 107.2 (7)
C3—C4—C5—C6 −179.5 (7) C7—C8—C11—Br3 −71.3 (8)
C9—C4—C5—C6 1.0 (10)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C4–C9 ring.

D—H···A D—H H···A D···A D—H···A
C11—H11···Br1i 1.00 2.92 3.709 (8) 137
C10—H10B···Cg2ii 0.99 2.70 3.438 (8) 131

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5096).

References

  1. Chauhan, P. M. S. & Srivastava, S. K. (2001). Curr. Med. Chem. 8, 1535–1542. [DOI] [PubMed]
  2. Chen, Y. L., Fang, K. C., Sheu, J. Y., Hsu, S. L. & Tzeng, C. C. (2001). J. Med. Chem. 44, 2374–2377. [DOI] [PubMed]
  3. Ferrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Med. Chem. 35, 815–826. [DOI] [PubMed]
  4. Jones, G. (1977). Quinolines, Part-I. Wiley Interscience Publication, John Wiley & Sons.
  5. Lyle, R. E., Portlock, D. E., Kane, M. J. & Bristol, J. A. (1972). J. Org. Chem. 37, 3967–3968. [DOI] [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  8. Sahin, A., Cakmak, O., Demirtas, I., Okten, S. & Tutar, A. (2008). Tetrahedron, 64, 10068–10074.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989015008002/su5096sup1.cif

e-71-0o354-sup1.cif (333.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008002/su5096Isup2.hkl

e-71-0o354-Isup2.hkl (124.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008002/su5096Isup3.cml

. DOI: 10.1107/S2056989015008002/su5096fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015008002/su5096fig2.tif

A view along the a axis of the crystal packing of the title compound. The C—H⋯Br hydrogen bonds, C—H⋯π inter­actions (Table 1) and the Br⋯Cl and Br⋯N short contacts are shown as dashed lines.

CCDC reference: 902598

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES