Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 18;71(Pt 5):m112–m113. doi: 10.1107/S205698901500729X

Crystal structure of di­chlorido­bis­(methyl isonicotinate-κN)copper(II)

Elaheh Ahadi a, Hassan Hosseini-Monfared a,*, Peter Mayer b
PMCID: PMC4420097  PMID: 25995890

Abstract

In the title compound, [CuCl2(C7H7NO2)2], the square-planar-coordinated CuII ion lies on a centre of symmetry and is bonded to two monodentate methyl­isonicotinate ligands through their N atoms and by two chloride ligands. The mol­ecules pack in a herringbone pattern. Perpendicular to [100] there are weak inter­molecular C—H⋯Cl and C—H⋯O contacts. Along [100] there are infinite chains of edge-sharing octa­hedra linked through the chlorido ligands

Keywords: crystal structure, square-planar copper(II) complex, methyl isonicotinate

Related literature  

For related structures, see: Vitorica-Yrezabal et al. (2011); Laing & Carr (1971); Chen & Mak (2006); Ge et al. (2006); Chen et al. (2011); Ma et al. (2010). For background to isonicotinate, see: Zhou et al. (2006); Bera et al. (2001); Cotton et al. (2007); Tella et al. (2014). For the synthesis of 4-(5-phenyl-1,3,4-oxa­diazol-2-yl)pyridine, used in the preparation, see: Kangani & Day (2009).graphic file with name e-71-0m112-scheme1.jpg

Experimental  

Crystal data  

  • [CuCl2(C7H7NO2)2]

  • M r = 408.71

  • Monoclinic, Inline graphic

  • a = 3.7792 (4) Å

  • b = 29.891 (4) Å

  • c = 7.0139 (8) Å

  • β = 94.036 (10)°

  • V = 790.36 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 173 K

  • 0.50 × 0.05 × 0.04 mm

Data collection  

  • Oxford Diffraction Xcalibur 3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2011) T min = 0.775, T max = 1.000

  • 4265 measured reflections

  • 1617 independent reflections

  • 1404 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.091

  • S = 1.09

  • 1617 reflections

  • 107 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901500729X/cq2014sup1.cif

e-71-0m112-sup1.cif (158.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500729X/cq2014Isup2.hkl

e-71-0m112-Isup2.hkl (89.2KB, hkl)

x y z . DOI: 10.1107/S205698901500729X/cq2014fig1.tif

The mol­ecular structure of the title compound (ellipsoids drawn at the 30% probability level). Symmetry code: i = 1 − x, −y, 1 − z. Non-labelled non-hydrogen atoms have been generated by symmetry i.

. DOI: 10.1107/S205698901500729X/cq2014fig2.tif

The unit cell viewed along [100] (ellipsoids drawn at the 50% probability level). Inter­molecular C—H⋯Cl and C—H⋯O contacts are indicated by dashed lines.

. DOI: 10.1107/S205698901500729X/cq2014fig3.tif

Infinite strands along [100] formed by inter­molecular Cu—Cl bonds (thin bond diameter) (drawn at the 30% ellipsoid probability level).

CCDC reference: 1059032

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C2H2Cl1i 0.95 2.83 3.517(3) 130
C7H7BO2ii 0.98 2.53 3.470(4) 161
C7H7CO1iii 0.98 2.58 3.298(4) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the University of Zanjan and the School of Chemistry, Zanjan, and the Department of Chemistry of the LMU Munich for financial support.

supplementary crystallographic information

S1. Comment

Isonicotinate is a versatile ditopic ligand that has been used for various applications. The copper(II) isonicotinate (Cu(4–C5H4N-COO)2(H2O)4) coordination polymer has been explored as a sorbent in flow injection solid-phase extraction for determination of trace polycyclic aromatic hydrocarbons in environmental matrices [Zhou et al. (2006)]. The incorporation of both dinuclear (M2) and mononuclear (M') units into molecular squares has been achieved by reacting a triply bonded Re2(II,II) complex possessing two cis isonicotinate donor ligands with Pt(II) containing molecules with substitutionally labile cis trifluoromethanesulfonate groups [Bera et al. (2001)]. Quadruply bonded Mo24+ species having isonicotinate ligands bound through the carboxylate group have been designed to act as 'anglers' by luring metal-containing Lewis acids to bind to the N-pyridyl group [Cotton et al. (2007)]. The copper-isonicotinate metal-organic frameworks [Cu(INA)2] (INA = isonicotinate) (MOFs) have been prepared simply by mixing and heating solid reactants without milling. The adsorption of fluorescein dye on the as-synthesized [Cu(INA)2] has also been investigated [Tella et al. (2014)].

The molecular structure of the title compound possessing a crystallographic centre of inversion is depicted in Fig. 1. The first coordination sphere of the Cu1 centre consists of two nitrogen atoms, from the isoniconate ligands, at a distance of 2.025 (2) Å and two chlorido ligands at a distance of 2.2962 (7) Å. The various N1—Cu1—Cl1 angles are close to 90° resulting in a square-planar first coordination sphere of Cu1. By coordination of two additional chlorido ligands from adjacent complexes at a distance of 2.9215 (7) Å from the Cu1 centre, the coordination sphere is expanded to a distorted octahedron. The pyridine ring and the Cu1—Cl1 bond are not coplanar, but enclose an angle of 59.00 (9)°. The Cu—N1 bond and the plane of the pyridine ring deviate from coplanarity by an angle of 5.05 (11)°.

The herringbone pattern of the packing of the title compound is shown in Fig. 2. Perpendicular to [100] there are weak intermolecular C—H···Cl and C—H···O contacts with donor-acceptor distances of 3.517 (3) Å, 3.470 (4) Å and 3.298 (4) Å (C2···Cl1, C7···O2 and C7···O1, respectively). Along [100] there are infinite chains of edge-sharing octahedra linked through the chlorido ligands (Fig.3). This structural feature is found in many copper complexes consisting of two chlorido ligands and two pyridine derivatives, e.g. Vitorica-Yrezabel et al. (2011), Laing et al. (1971), Chen et al. (2006), Ge et al. (2006), Chen et al. (2011), Ma et al. (2010). Each bridging chlorido ligand has a short (2.2962 (7) Å) and a longer (2.9215 (7) Å) bond distance to the two adjacent Cu-centers. The bond angle at the bridging chloride ions is 92.03 (2)°. A consequence of the formation of the strands along [100] is π-stacking between adjacent pyridine rings. The average distance between the centres of gravity of adjacent rings is a = 3.7792 Å.

S2. Experimental

The compound 4-(5-phenyl-1,3,4-oxadiazol-2-yl)pyridine (0.04 g, 0.18 mmol, synthesised by a previously reported method [Kangani et al. (2009)], and copper(II) chloride dihydrate (0.015 g, 0.09 mmol) were placed in the main arm of a branched tube. Methanol (13 ml) was carefully added to fill the arms, the tube was sealed and the reagent-containing arm immersed in an oil bath at 60 °C while the other arm was kept at ambient temperature. After two weeks, green, needle shaped crystals were deposited in the cooler arm. The crystals were filtered, washed with methanol and air dried. Yield 19% (7.0 mg).

S3. Refinement

All hydrogen atoms were positioned geometrically and treated as riding on their parent atoms (aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å, Uiso(H) = 1.2Ueq(C, aromatic), Uiso(H) = 1.5Ueq(C, methyl)). The methyl group was allowed to rotate along the C–O bond to best fit the experimental electron density.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound (ellipsoids drawn at the 30% probability level). Symmetry code: i = 1 - x, -y, 1 - z. Non-labelled non-hydrogen atoms have been generated by symmetry i.

Fig. 2.

Fig. 2.

The unit cell viewed along [100] (ellipsoids drawn at the 50% probability level). Intermolecular C—H···Cl and C—H···O contacts are indicated by dashed lines.

Fig. 3.

Fig. 3.

Infinite strands along [100] formed by intermolecular Cu—Cl bonds (thin bond diameter) (drawn at the 30% ellipsoid probability level).

Crystal data

[CuCl2(C7H7NO2)2] F(000) = 414
Mr = 408.71 Dx = 1.717 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 3.7792 (4) Å Cell parameters from 1293 reflections
b = 29.891 (4) Å θ = 4.5–26.3°
c = 7.0139 (8) Å µ = 1.74 mm1
β = 94.036 (10)° T = 173 K
V = 790.36 (16) Å3 Rod, green
Z = 2 0.50 × 0.05 × 0.04 mm

Data collection

Oxford Diffraction Xcalibur 3 diffractometer 1617 independent reflections
Radiation source: fine-focus sealed tube 1404 reflections with I > 2σ(I)
Detector resolution: 15.9809 pixels mm-1 Rint = 0.034
ω scans θmax = 26.4°, θmin = 4.5°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2011) h = −4→4
Tmin = 0.775, Tmax = 1.000 k = −33→37
4265 measured reflections l = −8→6

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.6044P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
1617 reflections Δρmax = 0.53 e Å3
107 parameters Δρmin = −0.69 e Å3

Special details

Experimental. Absorption correction: CrysAlisPro (Oxford Diffraction, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.5000 0.0000 0.5000 0.01825 (17)
Cl1 0.91406 (17) 0.03090 (2) 0.71647 (9) 0.01768 (18)
O2 0.3701 (7) 0.17679 (8) −0.1593 (3) 0.0414 (7)
O1 0.1672 (6) 0.20909 (6) 0.0994 (3) 0.0291 (5)
N1 0.4707 (6) 0.05771 (7) 0.3486 (3) 0.0168 (5)
C1 0.5365 (7) 0.05831 (9) 0.1633 (4) 0.0180 (6)
H1 0.6172 0.0316 0.1070 0.022*
C2 0.4918 (7) 0.09617 (9) 0.0505 (4) 0.0197 (6)
H2 0.5444 0.0955 −0.0800 0.024*
C3 0.3693 (7) 0.13491 (9) 0.1308 (4) 0.0174 (6)
C4 0.3076 (8) 0.13494 (9) 0.3240 (4) 0.0188 (6)
H4 0.2278 0.1613 0.3837 0.023*
C5 0.3647 (8) 0.09584 (9) 0.4276 (4) 0.0202 (6)
H5 0.3272 0.0961 0.5601 0.024*
C6 0.3063 (8) 0.17503 (10) 0.0051 (4) 0.0236 (7)
C7 0.0886 (11) 0.24908 (11) −0.0132 (5) 0.0384 (9)
H7A 0.3090 0.2613 −0.0577 0.058*
H7B −0.0224 0.2714 0.0657 0.058*
H7C −0.0739 0.2416 −0.1236 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0235 (3) 0.0123 (3) 0.0184 (3) −0.00169 (19) −0.0021 (2) 0.00175 (18)
Cl1 0.0186 (3) 0.0170 (4) 0.0175 (3) −0.0002 (3) 0.0016 (3) −0.0023 (2)
O2 0.0712 (19) 0.0277 (13) 0.0274 (13) 0.0115 (12) 0.0191 (13) 0.0092 (10)
O1 0.0465 (14) 0.0169 (11) 0.0239 (12) 0.0100 (10) 0.0035 (10) 0.0022 (9)
N1 0.0175 (12) 0.0144 (12) 0.0185 (12) 0.0009 (9) 0.0002 (9) −0.0003 (9)
C1 0.0201 (14) 0.0150 (14) 0.0192 (14) 0.0007 (11) 0.0038 (11) −0.0031 (11)
C2 0.0220 (15) 0.0190 (15) 0.0185 (14) −0.0010 (11) 0.0048 (11) −0.0006 (11)
C3 0.0169 (14) 0.0141 (14) 0.0210 (14) −0.0016 (10) 0.0003 (11) 0.0010 (11)
C4 0.0212 (14) 0.0146 (14) 0.0211 (15) 0.0005 (11) 0.0043 (11) −0.0029 (11)
C5 0.0242 (15) 0.0186 (14) 0.0184 (14) −0.0006 (12) 0.0049 (12) −0.0007 (11)
C6 0.0254 (16) 0.0192 (16) 0.0264 (17) 0.0002 (12) 0.0023 (13) 0.0000 (12)
C7 0.056 (2) 0.0217 (17) 0.037 (2) 0.0133 (16) 0.0034 (17) 0.0075 (14)

Geometric parameters (Å, º)

Cu1—N1 2.025 (2) C1—H1 0.9500
Cu1—N1i 2.025 (2) C2—C3 1.382 (4)
Cu1—Cl1 2.2962 (7) C2—H2 0.9500
Cu1—Cl1i 2.2962 (7) C3—C4 1.391 (4)
Cu1—Cl1ii 2.9215 (7) C3—C6 1.498 (4)
Cu1—Cl1iii 2.9215 (7) C4—C5 1.385 (4)
O2—C6 1.196 (4) C4—H4 0.9500
O1—C6 1.341 (3) C5—H5 0.9500
O1—C7 1.452 (4) C7—H7A 0.9800
N1—C1 1.340 (4) C7—H7B 0.9800
N1—C5 1.341 (3) C7—H7C 0.9800
C1—C2 1.385 (4)
N1—Cu1—N1i 180.00 (6) C3—C2—C1 118.9 (3)
N1—Cu1—Cl1 90.79 (7) C3—C2—H2 120.6
N1i—Cu1—Cl1 89.21 (7) C1—C2—H2 120.6
N1—Cu1—Cl1i 89.21 (7) C2—C3—C4 118.8 (3)
N1i—Cu1—Cl1i 90.79 (7) C2—C3—C6 118.4 (3)
Cl1—Cu1—Cl1i 180.0 C4—C3—C6 122.8 (3)
N1—Cu1—Cl1ii 90.70 (7) C5—C4—C3 118.7 (3)
N1i—Cu1—Cl1ii 89.29 (7) C5—C4—H4 120.7
Cl1—Cu1—Cl1ii 87.97 (2) C3—C4—H4 120.7
Cl1i—Cu1—Cl1ii 92.03 (2) N1—C5—C4 122.7 (3)
N1—Cu1—Cl1iii 89.30 (7) N1—C5—H5 118.6
N1i—Cu1—Cl1iii 90.71 (7) C4—C5—H5 118.6
Cl1—Cu1—Cl1iii 92.03 (2) O2—C6—O1 123.7 (3)
Cl1i—Cu1—Cl1iii 87.97 (2) O2—C6—C3 124.6 (3)
Cl1ii—Cu1—Cl1iii 180.0 O1—C6—C3 111.7 (2)
C6—O1—C7 115.4 (2) O1—C7—H7A 109.5
C1—N1—C5 118.1 (2) O1—C7—H7B 109.5
C1—N1—Cu1 120.86 (18) H7A—C7—H7B 109.5
C5—N1—Cu1 120.97 (19) O1—C7—H7C 109.5
N1—C1—C2 122.8 (3) H7A—C7—H7C 109.5
N1—C1—H1 118.6 H7B—C7—H7C 109.5
C2—C1—H1 118.6
C5—N1—C1—C2 −1.5 (4) Cu1—N1—C5—C4 −173.5 (2)
Cu1—N1—C1—C2 174.6 (2) C3—C4—C5—N1 −1.3 (4)
N1—C1—C2—C3 −1.0 (4) C7—O1—C6—O2 1.3 (5)
C1—C2—C3—C4 2.3 (4) C7—O1—C6—C3 −178.5 (3)
C1—C2—C3—C6 −177.2 (3) C2—C3—C6—O2 −3.7 (5)
C2—C3—C4—C5 −1.2 (4) C4—C3—C6—O2 176.8 (3)
C6—C3—C4—C5 178.3 (3) C2—C3—C6—O1 176.1 (3)
C1—N1—C5—C4 2.7 (4) C4—C3—C6—O1 −3.4 (4)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1; (iii) x−1, y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···Cl1iv 0.95 2.83 3.517 (3) 130
C7—H7B···O2v 0.98 2.53 3.470 (4) 161
C7—H7C···O1vi 0.98 2.58 3.298 (4) 130

Symmetry codes: (iv) x, y, z−1; (v) x−1/2, −y+1/2, z+1/2; (vi) x−1/2, −y+1/2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: CQ2014).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bera, J. K., Smucker, B. W., Walton, R. A. & Dunbar, K. R. (2001). Chem. Commun. pp. 2562–2563.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Chen, W.-T., Luo, Z.-G., Xu, Y.-P., Luo, Q.-Y. & Liu, J.-H. (2011). J. Chem. Res. (S), 35, 253–256.
  5. Chen, X.-D. & Mak, T. C. W. (2006). Inorg. Chim. Acta, 359, 685–689.
  6. Cotton, F. A., Jin, J. Y., Li, Z., Liu, C. Y. & Murillo, C. A. (2007). Dalton Trans. pp. 2328–2335. [DOI] [PubMed]
  7. Ge, C.-H., Kou, H.-Z., Ni, Z.-H., Jiang, Y.-B. & Cui, A.-L. (2006). Inorg. Chim. Acta, 359, 541–547.
  8. Kangani, C. O. & Day, B. W. (2009). Tetrahedron Lett. 50, 5332–5335.
  9. Laing, M. & Carr, G. (1971). J. Chem. Soc. A, pp. 1141–1144.
  10. Ma, Z., Han, S., Kravtsov, V. C. & Moulton, B. (2010). Inorg. Chim. Acta, 363, 387–394.
  11. Oxford Diffraction (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Tella, A. C., Owalude, S. O., Ojekanmi, C. A. & Oluwafemi, O. S. (2014). New J. Chem. 38, 4494–4500.
  16. Vitorica-Yrezabal, I. J., Sullivan, R. A., Purver, S. L., Curfs, C., Tang, C. C. & Brammer, L. (2011). CrystEngComm, 13, 3189–3196.
  17. Zhou, Y. Y., Yan, X. P., Kim, K. N., Wang, S. W. & Liu, M. G. (2006). J. Chromatogr. A, 1116, 172–178. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901500729X/cq2014sup1.cif

e-71-0m112-sup1.cif (158.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500729X/cq2014Isup2.hkl

e-71-0m112-Isup2.hkl (89.2KB, hkl)

x y z . DOI: 10.1107/S205698901500729X/cq2014fig1.tif

The mol­ecular structure of the title compound (ellipsoids drawn at the 30% probability level). Symmetry code: i = 1 − x, −y, 1 − z. Non-labelled non-hydrogen atoms have been generated by symmetry i.

. DOI: 10.1107/S205698901500729X/cq2014fig2.tif

The unit cell viewed along [100] (ellipsoids drawn at the 50% probability level). Inter­molecular C—H⋯Cl and C—H⋯O contacts are indicated by dashed lines.

. DOI: 10.1107/S205698901500729X/cq2014fig3.tif

Infinite strands along [100] formed by inter­molecular Cu—Cl bonds (thin bond diameter) (drawn at the 30% ellipsoid probability level).

CCDC reference: 1059032

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES