Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 25;71(Pt 5):o349–o350. doi: 10.1107/S2056989015007471

Crystal structure of 4-bromo-2-[(E)-N-(2,2,6,6-tetra­methyl­piperidin-4-yl)carboximido­yl]phenol dihydrate

Joel T Mague a, Shaaban K Mohamed b,c, Mehmet Akkurt d, Antar A Abdelhamid e, Mustafa R Albayati f,*
PMCID: PMC4420100  PMID: 25995942

Abstract

In the title hydrate, C16H23BrN2O·2H2O, the organic mol­ecule features a strong intra­molecular O—H⋯N hydrogen bond. The piperidine ring, in addition, adopts a chair conformation with the exocyclic C—N bond in an equatorial orientation. The water molecules of crystallization are disordered (each over two sets of sites with half occupancy. In the crystal, they associate into corrugated (100) sheets of (H2O)4 tetra­mers linked by O—H⋯O hydrogen bonds. The organic mol­ecules, in turn, are arranged at both sides of these sheets, linked by water–piperidine O—H⋯N hydrogen bonds.

Keywords: crystal structure, Schiff bases, piperidines, hydrogen bonding

Related literature  

For various biological applications of piperidine-containing compounds, see: Sánchez-Sancho & Herrandón (1998); Nithiya et al. (2011); Adger et al. (1996); Kozikowski et al. (1998); Brau et al. (2000).graphic file with name e-71-0o349-scheme1.jpg

Experimental  

Crystal data  

  • C16H23BrN2O·2H2O

  • M r = 375.30

  • Monoclinic, Inline graphic

  • a = 39.6126 (7) Å

  • b = 6.0497 (1) Å

  • c = 14.8673 (3) Å

  • β = 98.889 (1)°

  • V = 3520.07 (11) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.30 mm−1

  • T = 150 K

  • 0.34 × 0.09 × 0.08 mm

Data collection  

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2014) T min = 0.54, T max = 0.77

  • 12901 measured reflections

  • 3428 independent reflections

  • 3113 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.077

  • S = 1.10

  • 3428 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a ); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b ); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015007471/bg2553sup1.cif

e-71-0o349-sup1.cif (412.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007471/bg2553Isup2.hkl

e-71-0o349-Isup2.hkl (188.3KB, hkl)

. DOI: 10.1107/S2056989015007471/bg2553fig1.tif

The the asymmetric unit showing the intra- and inter­molecular O—H⋯N hydrogen bonds as dotted lines. Only one set of the disordered hydrogen atoms is shown.

b . DOI: 10.1107/S2056989015007471/bg2553fig2.tif

Packing viewed down the b axis with inter­molecular O—H⋯N and O—H⋯O hydrogen bonds shown, respectively, as purple and red dotted lines. Only one set of the disordered hydrogen atoms is shown.

. DOI: 10.1107/S2056989015007471/bg2553fig3.tif

A portion of the layer of lattice water mol­ecules. Only one set of the disordered hydrogen atoms is shown.

CCDC reference: 1059897

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1AN1 0.84 1.87 2.628(2) 149
O2H2BN2 0.84 2.02 2.861(2) 175
O3H3AO2i 0.84 2.24 3.059(2) 167
O3H3BO2ii 0.84 2.04 2.869(2) 168
O2AH2BAN2 0.84 2.02 2.861(2) 175
O2AH2DO3A iii 0.84 2.04 2.869(2) 170
O3AH3AAO2A i 0.84 2.24 3.059(2) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

supplementary crystallographic information

S1. Comment

Piperidine-bearing compounds have diverse applications in commercial and medicinal fields. The piperidine nucleus is an ubiquitous structural feature of biologically active compounds and numerous secondary metabolites, for example (S)-pipecolic acid a non-proteinogenic amino acid associated with epilepsy (Sánchez-Sancho & Herrandón, 1998; Nithiya et al., 2011; Adger et al., 1996). Moreover, piperidine-containing compounds were evaluated for their effect on plasma glucose level (Kozikowski et al., 1998), insulin normalization and treatment of cocaine abuse (Brau et al., 2000). In this vein and following our strategy for synthesis of bio-active heterocyclic compounds, we report the synthesis and crystal structure of the title compound.

The conformation of the title molecule is determined in part by the strong O1—H1a···N1 hydrogen bond. The substituted piperidine ring adopts a chair conformation with puckering parameters Q = 0.503 (2) Å, θ = 12.0 (2) Å and φ = 176 (1)°. In the crystal, hydrogen bonding between the lattice water molecules generates corrugated layers approximately parallel to (100) with the piperidine nitrogen atoms (N2) hydrogen bonded to both sides (Table 1 and Fig. 2). Although the disorder in the lattice waters makes a precise description of the hydrogen bonding network in the water layer difficult (and generates apparent short H···H contacts), use of one component of the disorder indicates the presence of (H2O)4 units (Fig. 3) which hydrogen bond to the piperidine nitrogen atoms.

S2. Experimental

A mixture of 1 mmol (156 mg) of 2,2,6,6-tetramethylpiperidin-4-amine and 1 mmol (201 mg) of 5-bromo-2-hydroxybenzaldehyde in 30 ml ethanol was heated under reflux for 5 h. The solid product was obtained on cooling, filtered off, dried under vacuum and recrystallized from ethanol to afford pale yellow columns which were suitable for X-ray diffraction. Mp. 361 K.

S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å and O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Each lattice water molecule is disordered over two sites with the oxygen and one hydrogen in common. Based on peak heights for the disordered H atoms, the two sites for these atoms were judged to be equally occupied.

Figures

Fig. 1.

Fig. 1.

The the asymmetric unit showing the intra- and intermolecular O—H···N hydrogen bonds as dotted lines. Only one set of the disordered hydrogen atoms is shown.

Fig. 2.

Fig. 2.

Packing viewed down the b axis with intermolecular O—H···N and O—H···O hydrogen bonds shown, respectively, as purple and red dotted lines. Only one set of the disordered hydrogen atoms is shown.

Fig. 3.

Fig. 3.

A portion of the layer of lattice water molecules. Only one set of the disordered hydrogen atoms is shown.

Crystal data

C16H23BrN2O·2H2O F(000) = 1568
Mr = 375.30 Dx = 1.416 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54178 Å
a = 39.6126 (7) Å Cell parameters from 9702 reflections
b = 6.0497 (1) Å θ = 6.0–72.1°
c = 14.8673 (3) Å µ = 3.30 mm1
β = 98.889 (1)° T = 150 K
V = 3520.07 (11) Å3 Column, pale yellow
Z = 8 0.34 × 0.09 × 0.08 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 3428 independent reflections
Radiation source: INCOATEC IµS micro–focus source 3113 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.025
Detector resolution: 10.4167 pixels mm-1 θmax = 72.2°, θmin = 6.0°
ω scans h = −48→45
Absorption correction: numerical (SADABS; Bruker, 2014) k = −7→6
Tmin = 0.54, Tmax = 0.77 l = −18→15
12901 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: mixed
wR(F2) = 0.077 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0323P)2 + 4.9527P] where P = (Fo2 + 2Fc2)/3
3428 reflections (Δ/σ)max = 0.002
204 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.67 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å and O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Each lattice water molecule is disordered over two sites with the oxygen and one hydrogen in common. Based on peak heights for the disordered H atoms, the two sites for these atoms were judged to be equally occupied.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.82893 (2) 0.47282 (5) 0.33146 (2) 0.04137 (10)
O1 0.69904 (4) 0.0570 (2) 0.41569 (10) 0.0300 (3)
H1A 0.6835 0.1527 0.4080 0.056 (9)*
N1 0.66823 (4) 0.4316 (3) 0.36510 (11) 0.0236 (3)
N2 0.56827 (4) 0.6877 (2) 0.37146 (10) 0.0191 (3)
H2A 0.5586 0.5638 0.3912 0.023*
C1 0.72738 (5) 0.3664 (3) 0.35750 (12) 0.0224 (4)
C2 0.72757 (5) 0.1514 (3) 0.39411 (12) 0.0251 (4)
C3 0.75833 (6) 0.0340 (3) 0.40982 (13) 0.0301 (4)
H3 0.7587 −0.1111 0.4344 0.036*
C4 0.78818 (5) 0.1262 (4) 0.39007 (13) 0.0335 (5)
H4 0.8089 0.0450 0.4008 0.040*
C5 0.78768 (5) 0.3385 (4) 0.35440 (13) 0.0288 (4)
C6 0.75773 (5) 0.4580 (3) 0.33731 (12) 0.0249 (4)
H6 0.7577 0.6021 0.3119 0.030*
C7 0.69657 (5) 0.5031 (3) 0.34611 (12) 0.0215 (4)
H7 0.6977 0.6497 0.3239 0.026*
C8 0.63930 (4) 0.5860 (3) 0.35583 (12) 0.0210 (4)
H8 0.6465 0.7326 0.3343 0.025*
C9 0.62799 (5) 0.6125 (3) 0.44904 (12) 0.0215 (4)
H9A 0.6469 0.6795 0.4917 0.026*
H9B 0.6233 0.4646 0.4728 0.026*
C10 0.59592 (4) 0.7571 (3) 0.44580 (12) 0.0200 (4)
C11 0.57716 (4) 0.6334 (3) 0.28012 (11) 0.0196 (3)
C12 0.60997 (5) 0.4941 (3) 0.28757 (12) 0.0213 (4)
H12A 0.6049 0.3418 0.3058 0.026*
H12B 0.6173 0.4862 0.2269 0.026*
C13 0.60480 (5) 1.0012 (3) 0.43633 (14) 0.0249 (4)
H13A 0.6170 1.0200 0.3844 0.037*
H13B 0.6193 1.0512 0.4920 0.037*
H13C 0.5837 1.0889 0.4265 0.037*
C14 0.58145 (5) 0.7278 (3) 0.53433 (12) 0.0269 (4)
H14A 0.5617 0.8258 0.5342 0.040*
H14B 0.5990 0.7650 0.5860 0.040*
H14C 0.5743 0.5740 0.5397 0.040*
C15 0.58037 (5) 0.8434 (3) 0.22423 (12) 0.0247 (4)
H15A 0.5606 0.9394 0.2272 0.037*
H15B 0.5811 0.8031 0.1607 0.037*
H15C 0.6014 0.9218 0.2491 0.037*
C16 0.54701 (5) 0.4976 (3) 0.23218 (13) 0.0252 (4)
H16A 0.5435 0.3684 0.2694 0.038*
H16B 0.5519 0.4485 0.1727 0.038*
H16C 0.5263 0.5889 0.2237 0.038*
O2 0.51008 (4) 0.9736 (2) 0.35246 (11) 0.0331 (3) 0.5
H2B 0.5278 0.8954 0.3562 0.040* 0.5
H2C 0.5038 1.0005 0.2970 0.040* 0.5
O3 0.51664 (4) 0.2904 (3) 0.49776 (11) 0.0399 (4) 0.5
H3A 0.5127 0.2158 0.5427 0.048* 0.5
H3B 0.5124 0.2081 0.4519 0.048* 0.5
O2A 0.51008 (4) 0.9736 (2) 0.35246 (11) 0.0331 (3) 0.5
H2BA 0.5278 0.8954 0.3562 0.040* 0.5
H2D 0.5105 1.0762 0.3907 0.040* 0.5
O3A 0.51664 (4) 0.2904 (3) 0.49776 (11) 0.0399 (4) 0.5
H3AA 0.5127 0.2158 0.5427 0.048* 0.5
H3C 0.5069 0.4131 0.5000 0.048* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01904 (12) 0.06914 (19) 0.03582 (14) −0.00163 (10) 0.00390 (9) −0.01717 (11)
O1 0.0346 (8) 0.0241 (7) 0.0318 (7) 0.0020 (6) 0.0068 (6) 0.0023 (6)
N1 0.0216 (8) 0.0231 (8) 0.0259 (8) 0.0039 (6) 0.0034 (6) 0.0019 (6)
N2 0.0191 (7) 0.0207 (7) 0.0184 (7) −0.0018 (6) 0.0054 (5) −0.0001 (6)
C1 0.0228 (9) 0.0258 (9) 0.0183 (8) 0.0036 (7) 0.0017 (6) −0.0033 (7)
C2 0.0311 (10) 0.0250 (9) 0.0186 (8) 0.0045 (8) 0.0015 (7) −0.0035 (7)
C3 0.0393 (11) 0.0286 (10) 0.0215 (9) 0.0126 (9) 0.0013 (8) −0.0015 (8)
C4 0.0306 (10) 0.0446 (12) 0.0234 (10) 0.0181 (9) −0.0020 (8) −0.0067 (9)
C5 0.0206 (9) 0.0421 (12) 0.0227 (9) 0.0039 (8) 0.0003 (7) −0.0109 (8)
C6 0.0228 (9) 0.0308 (10) 0.0207 (9) 0.0024 (8) 0.0023 (7) −0.0047 (7)
C7 0.0227 (9) 0.0216 (9) 0.0202 (8) 0.0033 (7) 0.0028 (7) 0.0020 (7)
C8 0.0188 (8) 0.0189 (8) 0.0257 (9) 0.0025 (7) 0.0044 (7) 0.0041 (7)
C9 0.0226 (9) 0.0200 (8) 0.0211 (9) 0.0010 (7) 0.0014 (7) 0.0017 (7)
C10 0.0213 (8) 0.0206 (9) 0.0181 (8) −0.0001 (7) 0.0034 (6) 0.0003 (7)
C11 0.0188 (8) 0.0224 (9) 0.0182 (8) −0.0002 (7) 0.0046 (6) −0.0001 (7)
C12 0.0227 (9) 0.0211 (9) 0.0206 (8) 0.0023 (7) 0.0051 (7) 0.0007 (7)
C13 0.0262 (10) 0.0188 (9) 0.0288 (10) −0.0001 (7) 0.0018 (7) −0.0007 (7)
C14 0.0313 (10) 0.0302 (10) 0.0201 (9) −0.0013 (8) 0.0070 (7) −0.0011 (8)
C15 0.0235 (9) 0.0289 (10) 0.0226 (9) 0.0030 (7) 0.0066 (7) 0.0055 (8)
C16 0.0220 (9) 0.0305 (10) 0.0232 (9) −0.0017 (7) 0.0041 (7) −0.0048 (7)
O2 0.0281 (7) 0.0337 (8) 0.0376 (8) 0.0058 (6) 0.0050 (6) −0.0057 (6)
O3 0.0444 (9) 0.0318 (8) 0.0450 (9) −0.0004 (7) 0.0113 (7) −0.0064 (7)
O2A 0.0281 (7) 0.0337 (8) 0.0376 (8) 0.0058 (6) 0.0050 (6) −0.0057 (6)
O3A 0.0444 (9) 0.0318 (8) 0.0450 (9) −0.0004 (7) 0.0113 (7) −0.0064 (7)

Geometric parameters (Å, º)

Br1—C5 1.902 (2) C10—C13 1.530 (2)
O1—C2 1.348 (2) C11—C16 1.532 (2)
O1—H1A 0.8400 C11—C15 1.534 (2)
N1—C7 1.275 (2) C11—C12 1.538 (2)
N1—C8 1.468 (2) C12—H12A 0.9900
N2—C10 1.491 (2) C12—H12B 0.9900
N2—C11 1.491 (2) C13—H13A 0.9800
N2—H2A 0.9099 C13—H13B 0.9800
C1—C6 1.398 (3) C13—H13C 0.9800
C1—C2 1.409 (3) C14—H14A 0.9800
C1—C7 1.463 (2) C14—H14B 0.9800
C2—C3 1.399 (3) C14—H14C 0.9800
C3—C4 1.379 (3) C15—H15A 0.9800
C3—H3 0.9500 C15—H15B 0.9800
C4—C5 1.388 (3) C15—H15C 0.9800
C4—H4 0.9500 C16—H16A 0.9800
C5—C6 1.379 (3) C16—H16B 0.9800
C6—H6 0.9500 C16—H16C 0.9800
C7—H7 0.9500 O2—H2B 0.8400
C8—C12 1.525 (3) O2—H2C 0.8400
C8—C9 1.529 (2) O3—H3A 0.8399
C8—H8 1.0000 O3—H3B 0.8400
C9—C10 1.537 (2) O2A—H2BA 0.8400
C9—H9A 0.9900 O2A—H2D 0.8400
C9—H9B 0.9900 O3A—H3AA 0.8399
C10—C14 1.525 (2) O3A—H3C 0.8401
C2—O1—H1A 107.4 C14—C10—C9 109.03 (15)
C7—N1—C8 117.69 (15) C13—C10—C9 110.57 (15)
C10—N2—C11 119.17 (13) N2—C11—C16 105.38 (14)
C10—N2—H2A 106.8 N2—C11—C15 111.20 (14)
C11—N2—H2A 106.4 C16—C11—C15 108.43 (15)
C6—C1—C2 119.71 (17) N2—C11—C12 111.77 (14)
C6—C1—C7 118.73 (17) C16—C11—C12 109.21 (15)
C2—C1—C7 121.42 (17) C15—C11—C12 110.66 (14)
O1—C2—C3 119.07 (18) C8—C12—C11 113.38 (14)
O1—C2—C1 121.87 (17) C8—C12—H12A 108.9
C3—C2—C1 119.06 (19) C11—C12—H12A 108.9
C4—C3—C2 120.81 (19) C8—C12—H12B 108.9
C4—C3—H3 119.6 C11—C12—H12B 108.9
C2—C3—H3 119.6 H12A—C12—H12B 107.7
C3—C4—C5 119.57 (18) C10—C13—H13A 109.5
C3—C4—H4 120.2 C10—C13—H13B 109.5
C5—C4—H4 120.2 H13A—C13—H13B 109.5
C6—C5—C4 121.09 (19) C10—C13—H13C 109.5
C6—C5—Br1 118.76 (17) H13A—C13—H13C 109.5
C4—C5—Br1 120.12 (15) H13B—C13—H13C 109.5
C5—C6—C1 119.75 (19) C10—C14—H14A 109.5
C5—C6—H6 120.1 C10—C14—H14B 109.5
C1—C6—H6 120.1 H14A—C14—H14B 109.5
N1—C7—C1 122.01 (17) C10—C14—H14C 109.5
N1—C7—H7 119.0 H14A—C14—H14C 109.5
C1—C7—H7 119.0 H14B—C14—H14C 109.5
N1—C8—C12 109.52 (15) C11—C15—H15A 109.5
N1—C8—C9 108.38 (14) C11—C15—H15B 109.5
C12—C8—C9 109.97 (14) H15A—C15—H15B 109.5
N1—C8—H8 109.6 C11—C15—H15C 109.5
C12—C8—H8 109.6 H15A—C15—H15C 109.5
C9—C8—H8 109.6 H15B—C15—H15C 109.5
C8—C9—C10 112.81 (14) C11—C16—H16A 109.5
C8—C9—H9A 109.0 C11—C16—H16B 109.5
C10—C9—H9A 109.0 H16A—C16—H16B 109.5
C8—C9—H9B 109.0 C11—C16—H16C 109.5
C10—C9—H9B 109.0 H16A—C16—H16C 109.5
H9A—C9—H9B 107.8 H16B—C16—H16C 109.5
N2—C10—C14 106.03 (14) H2B—O2—H2C 106.9
N2—C10—C13 110.90 (14) H3A—O3—H3B 106.7
C14—C10—C13 108.29 (15) H2BA—O2A—H2D 116.2
N2—C10—C9 111.84 (14) H3AA—O3A—H3C 107.5
C6—C1—C2—O1 179.19 (17) C7—N1—C8—C9 −119.20 (18)
C7—C1—C2—O1 3.7 (3) N1—C8—C9—C10 −175.48 (14)
C6—C1—C2—C3 0.2 (3) C12—C8—C9—C10 −55.78 (19)
C7—C1—C2—C3 −175.29 (17) C11—N2—C10—C14 −162.17 (15)
O1—C2—C3—C4 −178.91 (17) C11—N2—C10—C13 80.49 (19)
C1—C2—C3—C4 0.1 (3) C11—N2—C10—C9 −43.4 (2)
C2—C3—C4—C5 0.2 (3) C8—C9—C10—N2 49.0 (2)
C3—C4—C5—C6 −0.8 (3) C8—C9—C10—C14 165.96 (15)
C3—C4—C5—Br1 177.42 (15) C8—C9—C10—C13 −75.08 (19)
C4—C5—C6—C1 1.1 (3) C10—N2—C11—C16 161.25 (15)
Br1—C5—C6—C1 −177.13 (13) C10—N2—C11—C15 −81.47 (18)
C2—C1—C6—C5 −0.8 (3) C10—N2—C11—C12 42.7 (2)
C7—C1—C6—C5 174.83 (16) N1—C8—C12—C11 174.37 (14)
C8—N1—C7—C1 176.84 (16) C9—C8—C12—C11 55.37 (19)
C6—C1—C7—N1 −178.48 (17) N2—C11—C12—C8 −48.0 (2)
C2—C1—C7—N1 −2.9 (3) C16—C11—C12—C8 −164.17 (15)
C7—N1—C8—C12 120.82 (18) C15—C11—C12—C8 76.55 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N1 0.84 1.87 2.628 (2) 149
O2—H2B···N2 0.84 2.02 2.861 (2) 175
O3—H3A···O2i 0.84 2.24 3.059 (2) 167
O3—H3B···O2ii 0.84 2.04 2.869 (2) 168
O2A—H2BA···N2 0.84 2.02 2.861 (2) 175
O2A—H2D···O3Aiii 0.84 2.04 2.869 (2) 170
O3A—H3AA···O2Ai 0.84 2.24 3.059 (2) 167

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) x, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BG2553).

References

  1. Adger, B., Dyer, U., Hutton, G. & Woods, M. (1996). Tetrahedron Lett. 37, 6399–6402.
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Brau, M. E., Branitzki, P., Olschewski, A., Vogel, W. & Hempelmann, G. (2000). Anesth. Analg. 91, 1499–1505. [DOI] [PubMed]
  4. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  5. Kozikowski, A. P., Araldi, G. L., Boja, J., Meil, W. M., Johnson, K. M., Flippen-Anderson, J. L., George, C. & Saiah, E. (1998). J. Med. Chem. 41, 1962–1969. [DOI] [PubMed]
  6. Nithiya, S., Karthik, N. & Jayabharathi, J. (2011). Int. J. Pharm. Pharm. Sci. 3, 254–256.
  7. Sánchez-Sancho, F. & Herrandón, B. (1998). Tetrahedron Asymmetry, 9, 1951–1965.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015007471/bg2553sup1.cif

e-71-0o349-sup1.cif (412.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007471/bg2553Isup2.hkl

e-71-0o349-Isup2.hkl (188.3KB, hkl)

. DOI: 10.1107/S2056989015007471/bg2553fig1.tif

The the asymmetric unit showing the intra- and inter­molecular O—H⋯N hydrogen bonds as dotted lines. Only one set of the disordered hydrogen atoms is shown.

b . DOI: 10.1107/S2056989015007471/bg2553fig2.tif

Packing viewed down the b axis with inter­molecular O—H⋯N and O—H⋯O hydrogen bonds shown, respectively, as purple and red dotted lines. Only one set of the disordered hydrogen atoms is shown.

. DOI: 10.1107/S2056989015007471/bg2553fig3.tif

A portion of the layer of lattice water mol­ecules. Only one set of the disordered hydrogen atoms is shown.

CCDC reference: 1059897

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES