Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 2;71(Pt 5):443–446. doi: 10.1107/S2056989015005563

Crystal structure of [bis­(2,6-diiso­propyl­phen­yl) phosphato-κO]tris­(methanol-κO)lithium methanol monosolvate

Mikhail E Minyaev a,*, Ilya E Nifant’ev a, Alexander N Tavtorkin a, Sof’ya A Korchagina a, Shadana Sh Zeynalova b
PMCID: PMC4420106  PMID: 25995851

In the first reported crystal structure of the family of lithium phosphate diesters, the Li atom is in a slightly distorted tetra­hedral coordination environment and exhibits one intra­molecular O—H⋯O hydrogen bond between a coordinating methanol mol­ecule and the terminal non-coordinating O atom of the phosphate group. The unit is connected with two non-coordinating methanol mol­ecules through two inter­molecular O—H⋯O hydrogen bonds and with a neighbouring unit through two other O—H⋯O inter­actions.

Keywords: crystal structure, alkali metal phosphate diester, diaryl phosphate, hydrogen bonding

Abstract

Crystals of the title compound, [Li{OOP(O-2,6-iPr2C6H3)2}(CH3OH)3]·CH3OH or [Li(C24H34O4P)(CH3OH)3]·CH3OH, have been formed in the reaction between HOOP(O-2,6-iPr2C6H3)2 and LiOH in methanol. The title compound is of inter­est as it represents the first reported crystal structure of the family of lithium phosphate diesters. The {Li(CH3OH)3[O2P(O-iPr2C6H3)2]} unit displays the Li atom in a slightly distorted tetra­hedral coordination environment and exhibits one intra­molecular O—H⋯O hydrogen bond between a coordinating methanol mol­ecule and the terminal non-coordinating O atom of the phosphate group. The unit is connected with two non-coordinating methanol mol­ecules through two inter­molecular O—H⋯O hydrogen bonds, and with a neighbouring unit through two other O—H⋯O inter­actions. These inter­molecular hydrogen bonds lead to the formation of infinite chains along [100]. There are no significant inter­actions between the chains.

Chemical context  

Alkali metal phosphate diesters are of inter­est not only because of their fundamental biological importance (see, for example: Gerus & Lis, 2013, and references therein), but also because they are direct synthetic precursors of organophos­phate d- and f-metal complexes, which may find applications in various catalytic reactions. For example, rare-earth tris-(diaryl phosphate) complexes may be successfully used in polymerization reactions of 1,4-dienes (Nifant’ev et al., 2013, 2014).graphic file with name e-71-00443-scheme1.jpg

Crystals of the title compound, [Li(CH3OH)3{OOP(O-2,6-iPr2C6H3)2}]·CH3OH, have been obtained from the reaction between HOOP(O-2,6-iPr2C6H3)2 and LiOH in methanol followed by cooling the reaction mixture. Bis(2,6-diiso­propyl­phen­yl)phospho­ric acid (for its synthesis, see: Blonski et al., 1982; Kosolapoff et al., 1968) was prepared from phosphoryl trichloride and 2,6-diiso­propyl­phenol.

Structural commentary  

In the crystal structure of the title solvate, [Li(CH3OH)3{OOP(O-2,6-iPr2C6H3)2}]·CH3OH, the {Li(CH3OH)3[OOP(O-2,6-iPr2C6H3)2]} unit contains the Li+ cation coordinated by three methanol mol­ecules through the O5, O6 and O7 oxygen atoms (Fig. 1). One of the coordinating methanol mol­ecules has its methyl group disordered over two positions [occupancy ratio 0.75 (2):0.25 (2)]. The coordination sphere of Li+ is completed by the O2 oxygen atom of the diaryl phosphate group, [OOP(O-2,6-iPr2C6H3)2]. This configuration is stabilized by an intra­molecular hydrogen bond O5—H26⋯O1 (Fig.1, Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the {Li(CH3OH)3[OOP(O-2,6-iPr2C6H3)2]} unit. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. All but hy­droxy hydrogen atoms are omitted for clarity. The intra­molecular hydrogen bond is shown by a dashed line. The minor component of disorder in one of the methanol mol­ecules, C29B, is shown with a solid open line.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O5H26O1 0.79(2) 2.00(2) 2.7482(11) 158.2(19)
O6H28O8i 0.85(2) 1.86(2) 2.7013(14) 174(2)
O7H30O2ii 0.83(2) 1.89(2) 2.7152(11) 170.7(19)
O8H32O1 0.82(2) 1.88(2) 2.6929(12) 171.8(19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

The phospho­rus and lithium atoms are in approximately tetra­hedral environments with the corresponding bond angles ranging from 99.06 (4)–115.86 (4)° for the phosphate group and 101.32 (9)–118.40 (11) ° for the [LiO4] unit. The Li—O bond lengths range from 1.915 (2) Å to 1.945 (2) Å (Table 2). The P—O bonds can be grouped into two sets. The P1—O1 (P=O) and P1—O2 (P—O—Li) bonds have similar lengths and are ≃ 0.1 Å shorter than the P1—O3 and P1—O4 (P—O—Cipso) bonds (Table 2), i.e. regular single P—O bonds. Since the O3—C1 and O4—C13 (O—Cipso) bond lengths also correspond to single bonds, there is no charge redistribution between the PO4 core and the two aryl fragments. These observations could best be rationalized by three major resonance forms of the anion (Fig. 2).

Table 2. Selected bond lengths ().

P1O1 1.4934(7) Li1O5 1.932(2)
P1O2 1.4965(7) Li1O6 1.915(2)
P1O3 1.5993(7) Li1O7 1.931(2)
P1O4 1.6003(7) O3C1 1.4035(11)
Li1O2 1.945(2) O4C13 1.4040(11)

Figure 2.

Figure 2

Plausible resonance forms of the [OOP(O-2,6-iPr2C6H3)2] anion.

Supra­molecular features  

All vibrational absorption bands (e.g. C—H, C—C, CCH, O—H etc.) in the IR spectrum of the solid are fully consistent with the formula with only one exception. Regardless of the O—H absorption bands at 3636, 3576 cm−1, the usual methanol C—O absorption bands at 1025–1030 cm−1 are missing. A possible explanation is that the methanol mol­ecules are coordinating to lithium and form a hydrogen-bonding network. Consequently, the C—O stretching frequency may be shifted to lower wavenumbers and can be camouflaged by the phosphate absorption band at 912 cm−1. This explanation would correspond to the structure data as determined by X-ray diffraction in the current study.

The {[Li(CH3OH)3][OOP(O-2,6-iPr2C6H3)2]} unit is involved in four inter­molecular hydrogen bonds (Table 1, Fig. 3). Two symmetry-related O7—H30⋯O2 bonds connect two neighbouring units. O6—H28⋯O8 and O8—H32⋯O1 bonds link one unit and two non-coordinating methanol mol­ecules, which are further connected to another unit. These four inter­molecular hydrogen bonds result in an infinite chain extending along [100], connecting the {[Li(CH3OH)3][OOP(O-2,6-iPr2C6H3)2]} units and non-coordinating methanol mol­ecules. Neighbouring mol­ecules are related by inversion centers. Therefore, the orientations of the cations and anions switch in such a way as to allow the ions of neighbouring mol­ecules in the chains to be involved in additional inter­molecular Coulombic inter­actions (Fig. 3).

Figure 3.

Figure 3

One-dimensional framework of {[Li(CH3OH)3][OOP(O-2,6-iPr2C6H3)2]}(CH3OH). All inter­molecular and intra­molecular O—H⋯O hydrogen bonds are shown. All but hy­droxy hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

The packing of the title compound is shown in Fig. 4. No significant hydrogen-bonding inter­actions are found between neighbouring chains. However, some short intra­chain contacts between methyl groups are present, probably due to crystal-packing effects.

Figure 4.

Figure 4

Packing diagram parallel to (100). All H atoms are omitted and hydrogen bonds are not shown. Infinite chains of [{Li(CH3OH)3[OOP(O-2,6-iPr2C6H3)2]}2(CH3OH)2]n extend along [100].

Database survey  

According to the Cambridge Structural Database (CSD version 5.35 with updates, Groom & Allen, 2014), the number of (RO)2PO2 M(solv)x structures (M is an alkali metal, solv is a solvent mol­ecule) is rather small. Structures containing additional transition metal atoms have been excluded from the search.

For related structures of potassium or sodium phosphate diesters, see: Kumara Swamy et al. (2001), CSD refcode ADAKUL; Gerus & Lis (2013), AGACIW; Kommana & Swamy (2003), BEDSOT; Hilken et al. (2014), NIZFEJ; Kumara Swamy & Kumaraswamy (2001), TIJCUK; Lugmair & Tilley (1998), VADMES; Ślepokura (2008), VIVRAU, VIVREY, VIVRIC. A mixed potassium and calcium phosphate diester has been described by Ślepokura (2008), VIVRUO. All ten found crystal structures are sodium or potassium salts. No lithium compound phosphate diesters has been structurally characterized up to date. Therefore, crystal structures of alkali metal dialkyl and diaryl phosphates remain virtually unexplored.

Synthesis and crystallization  

Synthesis of bis­(2,6-diiso­propyl­phen­yl) phospho­ric acid. Phosphoryl trichloride (12.6 ml, 21.0 g, 137 mmol, d = 1.67 g/ml) was added to a stirred solution of 2,6-diiso­propyl­phenol (52.60 g, 295 mmol) in benzene (60 ml). Et3N (44.0 ml, 32.0 g, 317 mmol, d = 0.728 g/ml, distilled over NaOH prior to use) was carefully added in small parts to the reaction mixture, while it was stirred vigorously. The reaction mixture consisted of a pale-yellow solution and an off-white precipitate of tri­ethyl­amine hydro­chloride. The mixture was heated under reflux for 2 days with occasional stirring. Then, water was added, and after stirring for 1 h, the organic and water layers were separated. The organic phase was evaporated under reduced pressure to produce a yellow oil. A mixture of acetone (85 ml) and water (25 ml, 1.39 mol) was added to the residue. The reaction mixture was then heated under reflux for five hours without stirring. All solvent was evaporated under reduced pressure from the mixture. The resulting precipitate was recrystallized from petroleum ether (70/100, ≃ 250 ml), filtered off, washed with cold (273 K) hexane and dried under dynamic vacuum. The yield of white crystals was 40.89 g (97.70 mmol, 71.3%). Melting point 432–433 K. 1H NMR (400 MHz, CDCl3): δ = 1.03 [24H, d, –CH(CH3)2], 3.34 [4H, septet, –CH(CH3)2], 7.02–7.14 (6H, m, HAr­yl), 11.08 [1H, br.s, P(O)OH]; 31P NMR (162 MHz, CDCl3): δ = −10.19.

Synthesis and crystallization of tris­(methanol)-lithium bis­(2,6-diiso­propyl­phen­yl) phosphate methanol solvate. Bis(2,6-diiso­propyl­phen­yl) phospho­ric acid (15.07 g, 36.0 mmol) was dissolved in methanol (50 ml). Lithium hydroxide (0.86 g, 36 mmol) was added in small parts to the mixture until pH = 7–8. The reaction mixture was filtered, and the resulting solution was placed into a freezer (258 K) for 3 days. The grown crystals were filtered off, washed with cold methanol (≃ 273 K). Several colorless needles were selected for X-ray structure determination analysis. The remaining crystals were dried under dynamic vacuum. Yield 7.72 g (14.0 mmol, 39%). 1H NMR (400 MHz, CDCl3): δ = 1.10 [24H, d, –CH(CH3)2, 3 J HH = 6.85 Hz], 2.63 (4H, br.s, CH3OH), 3.25 (12H, s, CH3OH), 3.60 [4H, septet, –CH(CH3)2, 3 J HH = 6.85 Hz], 7.03–7.09 (6H, m, HAr­yl). 31P NMR (162, MHz, CDCl3): δ = −10.23.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The positions of hy­droxy hydrogen atoms were found from a difference map. These atoms were refined with individual isotropic displacement parameters. All other hydrogen atoms were also found from the difference map but positioned geometrically (C—H distance = 0.95 Å for aromatic, 0.98 Å for methyl, 1.00 Å for –CHMe2 hydrogen atoms) and refined as riding atoms with relative isotropic displacement parameters [U iso(H) = 1.2U eq(C) for aromatic and –CHMe2, 1.5U eq(C) for methyl hydrogen atoms]. One of the coordinating methanol mol­ecules showed disorder of its methyl group, with restrained occupancies of 0.75 (2):0.25 (2) for atoms C29A and C29B. A rotating group model was applied for all methyl groups. Reflection 0 0 1 was obstructed by the beam stop and was omitted from refinement.

Table 3. Experimental details.

Crystal data
Chemical formula [Li(C24H34O4P)(CH4O)3]CH4O
M r 552.59
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 123
a, b, c () 11.1853(6), 11.5046(6), 14.5237(7)
, , () 90.855(2), 102.859(2), 118.683(1)
V (3) 1582.21(14)
Z 2
Radiation type Mo K
(mm1) 0.13
Crystal size (mm) 0.60 0.20 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.872, 0.986
No. of measured, independent and observed [I > 2(I)] reflections 22920, 10353, 8544
R int 0.021
(sin /)max (1) 0.732
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.040, 0.112, 1.02
No. of reflections 10353
No. of parameters 382
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.77, 0.53

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS2013 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015005563/wm5137sup1.cif

e-71-00443-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015005563/wm5137Isup2.hkl

e-71-00443-Isup2.hkl (566.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015005563/wm5137Isup3.cdx

CCDC reference: 1054771

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Ivan V. Anan’ev for assistance with the X-ray study.

supplementary crystallographic information

Crystal data

[Li(C24H34O4P)(CH4O)3]·CH4O Z = 2
Mr = 552.59 F(000) = 600
Triclinic, P1 Dx = 1.160 Mg m3
a = 11.1853 (6) Å Mo Kα radiation, λ = 0.710730 (9) Å
b = 11.5046 (6) Å Cell parameters from 9855 reflections
c = 14.5237 (7) Å θ = 2.3–31.3°
α = 90.855 (2)° µ = 0.13 mm1
β = 102.859 (2)° T = 123 K
γ = 118.683 (1)° Needle, colorless
V = 1582.21 (14) Å3 0.60 × 0.20 × 0.10 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 10353 independent reflections
Radiation source: fine-focus sealed tube 8544 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
ω scans θmax = 31.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −16→16
Tmin = 0.872, Tmax = 0.986 k = −16→16
22920 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: mixed
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.329P] where P = (Fo2 + 2Fc2)/3
10353 reflections (Δ/σ)max = 0.001
382 parameters Δρmax = 0.77 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
P1 0.62300 (2) 0.88864 (2) 0.82666 (2) 0.01132 (6)
Li1 0.7224 (2) 1.0298 (2) 1.03455 (14) 0.0216 (4)
O1 0.71418 (7) 0.82744 (7) 0.85725 (5) 0.01552 (14)
O2 0.64407 (7) 0.99757 (7) 0.89696 (5) 0.01510 (13)
O3 0.63126 (7) 0.93432 (7) 0.72374 (5) 0.01310 (13)
O4 0.45827 (7) 0.78087 (7) 0.80228 (5) 0.01346 (13)
C1 0.75457 (9) 0.99858 (9) 0.69226 (6) 0.01272 (16)
C2 0.82677 (10) 1.13862 (9) 0.70219 (7) 0.01421 (17)
C3 0.94480 (11) 1.19980 (10) 0.66505 (7) 0.01713 (18)
H3A 0.9972 1.2947 0.6711 0.021*
C4 0.98609 (11) 1.12365 (10) 0.61952 (7) 0.01835 (19)
H4A 1.0670 1.1667 0.5954 0.022*
C5 0.90964 (11) 0.98439 (10) 0.60897 (7) 0.01706 (18)
H5A 0.9383 0.9336 0.5767 0.020*
C6 0.79173 (10) 0.91821 (9) 0.64503 (7) 0.01379 (17)
C7 0.78093 (11) 1.22290 (10) 0.75072 (7) 0.01677 (18)
H7A 0.6876 1.1609 0.7628 0.020*
C8 0.76209 (14) 1.32155 (12) 0.68757 (9) 0.0267 (2)
H8A 0.6950 1.2724 0.6260 0.040*
H8B 0.8533 1.3862 0.6772 0.040*
H8C 0.7259 1.3691 0.7191 0.040*
C9 0.88650 (13) 1.29710 (11) 0.84741 (8) 0.0234 (2)
H9A 0.8916 1.2320 0.8885 0.035*
H9B 0.8554 1.3507 0.8777 0.035*
H9C 0.9800 1.3561 0.8377 0.035*
C10 0.70174 (10) 0.76631 (10) 0.62834 (7) 0.01561 (17)
H10A 0.6566 0.7390 0.6823 0.019*
C11 0.78739 (13) 0.69543 (11) 0.62659 (9) 0.0243 (2)
H11A 0.8629 0.7261 0.6858 0.036*
H11B 0.8287 0.7163 0.5721 0.036*
H11C 0.7253 0.5985 0.6207 0.036*
C12 0.58316 (12) 0.72179 (11) 0.53609 (8) 0.0228 (2)
H12A 0.5282 0.7665 0.5397 0.034*
H12B 0.5212 0.6246 0.5281 0.034*
H12C 0.6242 0.7459 0.4816 0.034*
C13 0.37172 (10) 0.70309 (9) 0.71375 (7) 0.01358 (16)
C14 0.30293 (10) 0.75513 (10) 0.64912 (7) 0.01566 (17)
C15 0.20879 (11) 0.67082 (11) 0.56457 (7) 0.01988 (19)
H15A 0.1599 0.7025 0.5193 0.024*
C16 0.18558 (11) 0.54178 (11) 0.54579 (8) 0.0221 (2)
H16A 0.1214 0.4862 0.4881 0.027*
C17 0.25624 (11) 0.49414 (10) 0.61134 (8) 0.02018 (19)
H17A 0.2401 0.4060 0.5977 0.024*
C18 0.35065 (10) 0.57348 (10) 0.69699 (7) 0.01573 (17)
C19 0.32711 (11) 0.89620 (10) 0.66694 (7) 0.01742 (18)
H19A 0.3980 0.9406 0.7299 0.021*
C20 0.19082 (13) 0.89471 (14) 0.67174 (9) 0.0277 (2)
H20A 0.1560 0.8457 0.7232 0.042*
H20B 0.1194 0.8506 0.6109 0.042*
H20C 0.2100 0.9868 0.6842 0.042*
C21 0.38705 (12) 0.97881 (12) 0.58994 (8) 0.0239 (2)
H21A 0.4731 0.9779 0.5866 0.036*
H21B 0.4093 1.0713 0.6061 0.036*
H21C 0.3170 0.9400 0.5280 0.036*
C22 0.42568 (11) 0.52122 (10) 0.77067 (7) 0.01739 (18)
H22A 0.5211 0.5984 0.8025 0.021*
C23 0.44768 (15) 0.41384 (12) 0.72666 (9) 0.0283 (2)
H23A 0.4917 0.4461 0.6742 0.042*
H23B 0.3563 0.3322 0.7022 0.042*
H23C 0.5092 0.3944 0.7754 0.042*
C24 0.34634 (14) 0.46943 (14) 0.84766 (9) 0.0294 (3)
H24A 0.3386 0.5414 0.8779 0.044*
H24B 0.3981 0.4396 0.8959 0.044*
H24C 0.2516 0.3941 0.8185 0.044*
O5 0.81065 (10) 0.91990 (11) 1.04939 (6) 0.0312 (2)
C25 0.92769 (13) 0.92434 (13) 1.11483 (9) 0.0284 (2)
H25A 0.9020 0.8346 1.1315 0.043*
H25B 0.9552 0.9860 1.1726 0.043*
H25C 1.0070 0.9554 1.0857 0.043*
O6 0.86571 (9) 1.20747 (8) 1.09305 (6) 0.02504 (17)
C27 0.84869 (16) 1.31713 (13) 1.11945 (11) 0.0339 (3)
H27A 0.8725 1.3800 1.0729 0.051*
H27B 0.9113 1.3628 1.1829 0.051*
H27C 0.7505 1.2842 1.1207 0.051*
O7 0.56431 (9) 0.94990 (8) 1.09033 (6) 0.02329 (17)
C29A 0.5209 (6) 0.8252 (4) 1.1245 (4) 0.0311 (8) 0.75 (2)
H29A 0.5812 0.7894 1.1136 0.047* 0.75 (2)
H29B 0.4225 0.7624 1.0905 0.047* 0.75 (2)
H29C 0.5290 0.8372 1.1929 0.047* 0.75 (2)
C29B 0.4900 (14) 0.8055 (11) 1.084 (2) 0.044 (3) 0.25 (2)
H29D 0.4135 0.7671 1.0245 0.066* 0.25 (2)
H29E 0.4504 0.7794 1.1384 0.066* 0.25 (2)
H29F 0.5558 0.7723 1.0829 0.066* 0.25 (2)
O8 0.85286 (11) 0.68825 (11) 0.87815 (8) 0.0382 (2)
C31 0.78917 (14) 0.59808 (13) 0.93888 (10) 0.0308 (3)
H31A 0.7034 0.5192 0.9011 0.046*
H31B 0.7646 0.6413 0.9843 0.046*
H31C 0.8550 0.5706 0.9738 0.046*
H26 0.799 (2) 0.8875 (19) 0.9979 (15) 0.045 (5)*
H28 0.953 (2) 1.236 (2) 1.0986 (14) 0.051 (5)*
H30 0.507 (2) 0.9752 (19) 1.0954 (14) 0.049 (5)*
H32 0.814 (2) 0.7331 (19) 0.8674 (14) 0.047 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.01157 (11) 0.01212 (11) 0.01118 (11) 0.00666 (8) 0.00276 (8) 0.00173 (8)
Li1 0.0244 (9) 0.0239 (9) 0.0188 (8) 0.0142 (8) 0.0046 (7) 0.0014 (7)
O1 0.0157 (3) 0.0174 (3) 0.0161 (3) 0.0110 (3) 0.0025 (3) 0.0020 (3)
O2 0.0175 (3) 0.0154 (3) 0.0139 (3) 0.0094 (3) 0.0039 (2) 0.0008 (2)
O3 0.0117 (3) 0.0157 (3) 0.0126 (3) 0.0066 (2) 0.0048 (2) 0.0041 (2)
O4 0.0119 (3) 0.0149 (3) 0.0119 (3) 0.0055 (2) 0.0028 (2) 0.0017 (2)
C1 0.0109 (4) 0.0150 (4) 0.0121 (4) 0.0060 (3) 0.0034 (3) 0.0024 (3)
C2 0.0147 (4) 0.0143 (4) 0.0132 (4) 0.0070 (3) 0.0033 (3) 0.0018 (3)
C3 0.0159 (4) 0.0147 (4) 0.0177 (4) 0.0052 (3) 0.0048 (3) 0.0021 (3)
C4 0.0145 (4) 0.0194 (5) 0.0195 (5) 0.0059 (4) 0.0075 (3) 0.0031 (4)
C5 0.0160 (4) 0.0196 (4) 0.0168 (4) 0.0091 (4) 0.0060 (3) 0.0016 (3)
C6 0.0135 (4) 0.0149 (4) 0.0126 (4) 0.0070 (3) 0.0028 (3) 0.0013 (3)
C7 0.0202 (4) 0.0146 (4) 0.0178 (4) 0.0098 (4) 0.0064 (4) 0.0027 (3)
C8 0.0362 (6) 0.0272 (6) 0.0286 (6) 0.0231 (5) 0.0124 (5) 0.0112 (4)
C9 0.0284 (5) 0.0191 (5) 0.0205 (5) 0.0106 (4) 0.0056 (4) −0.0021 (4)
C10 0.0174 (4) 0.0139 (4) 0.0160 (4) 0.0077 (4) 0.0056 (3) 0.0008 (3)
C11 0.0265 (5) 0.0194 (5) 0.0326 (6) 0.0147 (4) 0.0100 (4) 0.0039 (4)
C12 0.0221 (5) 0.0180 (5) 0.0215 (5) 0.0068 (4) 0.0008 (4) −0.0004 (4)
C13 0.0107 (4) 0.0145 (4) 0.0132 (4) 0.0044 (3) 0.0034 (3) 0.0021 (3)
C14 0.0131 (4) 0.0188 (4) 0.0152 (4) 0.0079 (4) 0.0040 (3) 0.0045 (3)
C15 0.0155 (4) 0.0248 (5) 0.0167 (4) 0.0092 (4) 0.0012 (3) 0.0041 (4)
C16 0.0174 (5) 0.0225 (5) 0.0180 (5) 0.0051 (4) 0.0005 (4) 0.0000 (4)
C17 0.0183 (4) 0.0157 (4) 0.0198 (5) 0.0043 (4) 0.0025 (4) 0.0003 (4)
C18 0.0139 (4) 0.0148 (4) 0.0163 (4) 0.0053 (3) 0.0044 (3) 0.0035 (3)
C19 0.0170 (4) 0.0208 (5) 0.0179 (4) 0.0123 (4) 0.0039 (3) 0.0044 (4)
C20 0.0249 (5) 0.0372 (6) 0.0314 (6) 0.0226 (5) 0.0089 (5) 0.0077 (5)
C21 0.0248 (5) 0.0250 (5) 0.0236 (5) 0.0137 (4) 0.0062 (4) 0.0105 (4)
C22 0.0187 (4) 0.0143 (4) 0.0184 (4) 0.0078 (4) 0.0040 (4) 0.0037 (3)
C23 0.0388 (7) 0.0247 (5) 0.0270 (6) 0.0213 (5) 0.0058 (5) 0.0031 (4)
C24 0.0357 (6) 0.0361 (6) 0.0252 (6) 0.0215 (6) 0.0146 (5) 0.0156 (5)
O5 0.0379 (5) 0.0508 (6) 0.0161 (4) 0.0356 (5) −0.0045 (3) −0.0052 (4)
C25 0.0228 (5) 0.0342 (6) 0.0244 (5) 0.0151 (5) −0.0029 (4) 0.0048 (5)
O6 0.0241 (4) 0.0222 (4) 0.0292 (4) 0.0115 (3) 0.0080 (3) −0.0014 (3)
C27 0.0407 (7) 0.0261 (6) 0.0443 (8) 0.0197 (6) 0.0210 (6) 0.0057 (5)
O7 0.0300 (4) 0.0268 (4) 0.0267 (4) 0.0213 (4) 0.0144 (3) 0.0105 (3)
C29A 0.0370 (16) 0.0231 (11) 0.0440 (17) 0.0190 (11) 0.0200 (14) 0.0109 (11)
C29B 0.034 (4) 0.026 (4) 0.080 (11) 0.017 (3) 0.025 (5) 0.013 (5)
O8 0.0365 (5) 0.0451 (6) 0.0568 (7) 0.0329 (5) 0.0243 (5) 0.0282 (5)
C31 0.0285 (6) 0.0269 (6) 0.0361 (7) 0.0144 (5) 0.0046 (5) 0.0098 (5)

Geometric parameters (Å, º)

P1—O1 1.4934 (7) C16—H16A 0.9500
P1—O2 1.4965 (7) C17—C18 1.3971 (14)
P1—O3 1.5993 (7) C17—H17A 0.9500
P1—O4 1.6003 (7) C18—C22 1.5214 (14)
Li1—O2 1.945 (2) C19—C20 1.5335 (15)
Li1—O5 1.932 (2) C19—C21 1.5352 (15)
Li1—O6 1.915 (2) C19—H19A 1.0000
Li1—O7 1.931 (2) C20—H20A 0.9800
O3—C1 1.4035 (11) C20—H20B 0.9800
O4—C13 1.4040 (11) C20—H20C 0.9800
C1—C2 1.4003 (13) C21—H21A 0.9800
C1—C6 1.4053 (13) C21—H21B 0.9800
C2—C3 1.4019 (13) C21—H21C 0.9800
C2—C7 1.5224 (13) C22—C23 1.5276 (15)
C3—C4 1.3875 (14) C22—C24 1.5320 (15)
C3—H3A 0.9500 C22—H22A 1.0000
C4—C5 1.3930 (14) C23—H23A 0.9800
C4—H4A 0.9500 C23—H23B 0.9800
C5—C6 1.3960 (13) C23—H23C 0.9800
C5—H5A 0.9500 C24—H24A 0.9800
C6—C10 1.5219 (13) C24—H24B 0.9800
C7—C8 1.5325 (15) C24—H24C 0.9800
C7—C9 1.5342 (15) O5—C25 1.4144 (14)
C7—H7A 1.0000 O5—H26 0.79 (2)
C8—H8A 0.9800 C25—H25A 0.9800
C8—H8B 0.9800 C25—H25B 0.9800
C8—H8C 0.9800 C25—H25C 0.9800
C9—H9A 0.9800 O6—C27 1.4225 (14)
C9—H9B 0.9800 O6—H28 0.85 (2)
C9—H9C 0.9800 C27—H27A 0.9800
C10—C11 1.5309 (14) C27—H27B 0.9800
C10—C12 1.5339 (15) C27—H27C 0.9800
C10—H10A 1.0000 O7—C29A 1.415 (3)
C11—H11A 0.9800 O7—C29B 1.447 (11)
C11—H11B 0.9800 O7—H30 0.83 (2)
C11—H11C 0.9800 C29A—H29A 0.9800
C12—H12A 0.9800 C29A—H29B 0.9800
C12—H12B 0.9800 C29A—H29C 0.9800
C12—H12C 0.9800 C29B—H29D 0.9800
C13—C18 1.4016 (14) C29B—H29E 0.9800
C13—C14 1.4032 (13) C29B—H29F 0.9800
C14—C15 1.4021 (14) O8—C31 1.3996 (16)
C14—C19 1.5196 (14) O8—H32 0.82 (2)
C15—C16 1.3901 (16) C31—H31A 0.9800
C15—H15A 0.9500 C31—H31B 0.9800
C16—C17 1.3885 (15) C31—H31C 0.9800
O1—P1—O2 115.86 (4) C18—C17—H17A 119.4
O1—P1—O3 110.98 (4) C17—C18—C13 117.37 (9)
O2—P1—O3 111.66 (4) C17—C18—C22 121.75 (9)
O1—P1—O4 112.44 (4) C13—C18—C22 120.87 (9)
O2—P1—O4 105.46 (4) C14—C19—C20 111.38 (9)
O3—P1—O4 99.06 (4) C14—C19—C21 111.12 (9)
O6—Li1—O7 114.81 (10) C20—C19—C21 110.04 (9)
O6—Li1—O5 106.80 (10) C14—C19—H19A 108.1
O7—Li1—O5 107.49 (10) C20—C19—H19A 108.1
O6—Li1—O2 118.40 (11) C21—C19—H19A 108.1
O7—Li1—O2 106.73 (10) C19—C20—H20A 109.5
O5—Li1—O2 101.32 (9) C19—C20—H20B 109.5
P1—O2—Li1 128.08 (7) H20A—C20—H20B 109.5
C1—O3—P1 125.61 (6) C19—C20—H20C 109.5
C13—O4—P1 126.90 (6) H20A—C20—H20C 109.5
C2—C1—O3 118.35 (8) H20B—C20—H20C 109.5
C2—C1—C6 123.54 (9) C19—C21—H21A 109.5
O3—C1—C6 117.87 (8) C19—C21—H21B 109.5
C1—C2—C3 117.12 (9) H21A—C21—H21B 109.5
C1—C2—C7 122.36 (9) C19—C21—H21C 109.5
C3—C2—C7 120.52 (9) H21A—C21—H21C 109.5
C4—C3—C2 120.88 (9) H21B—C21—H21C 109.5
C4—C3—H3A 119.6 C18—C22—C23 113.01 (9)
C2—C3—H3A 119.6 C18—C22—C24 110.50 (9)
C3—C4—C5 120.38 (9) C23—C22—C24 110.65 (9)
C3—C4—H4A 119.8 C18—C22—H22A 107.5
C5—C4—H4A 119.8 C23—C22—H22A 107.5
C4—C5—C6 121.16 (9) C24—C22—H22A 107.5
C4—C5—H5A 119.4 C22—C23—H23A 109.5
C6—C5—H5A 119.4 C22—C23—H23B 109.5
C5—C6—C1 116.89 (9) H23A—C23—H23B 109.5
C5—C6—C10 121.63 (8) C22—C23—H23C 109.5
C1—C6—C10 121.37 (8) H23A—C23—H23C 109.5
C2—C7—C8 111.88 (8) H23B—C23—H23C 109.5
C2—C7—C9 110.51 (8) C22—C24—H24A 109.5
C8—C7—C9 110.68 (9) C22—C24—H24B 109.5
C2—C7—H7A 107.9 H24A—C24—H24B 109.5
C8—C7—H7A 107.9 C22—C24—H24C 109.5
C9—C7—H7A 107.9 H24A—C24—H24C 109.5
C7—C8—H8A 109.5 H24B—C24—H24C 109.5
C7—C8—H8B 109.5 C25—O5—Li1 135.51 (10)
H8A—C8—H8B 109.5 C25—O5—H26 111.9 (14)
C7—C8—H8C 109.5 Li1—O5—H26 106.6 (14)
H8A—C8—H8C 109.5 O5—C25—H25A 109.5
H8B—C8—H8C 109.5 O5—C25—H25B 109.5
C7—C9—H9A 109.5 H25A—C25—H25B 109.5
C7—C9—H9B 109.5 O5—C25—H25C 109.5
H9A—C9—H9B 109.5 H25A—C25—H25C 109.5
C7—C9—H9C 109.5 H25B—C25—H25C 109.5
H9A—C9—H9C 109.5 C27—O6—Li1 128.27 (10)
H9B—C9—H9C 109.5 C27—O6—H28 108.3 (14)
C6—C10—C11 113.23 (8) Li1—O6—H28 122.7 (13)
C6—C10—C12 109.69 (8) O6—C27—H27A 109.5
C11—C10—C12 110.98 (9) O6—C27—H27B 109.5
C6—C10—H10A 107.6 H27A—C27—H27B 109.5
C11—C10—H10A 107.6 O6—C27—H27C 109.5
C12—C10—H10A 107.6 H27A—C27—H27C 109.5
C10—C11—H11A 109.5 H27B—C27—H27C 109.5
C10—C11—H11B 109.5 C29A—O7—Li1 122.16 (15)
H11A—C11—H11B 109.5 C29B—O7—Li1 117.0 (7)
C10—C11—H11C 109.5 C29A—O7—H30 108.0 (14)
H11A—C11—H11C 109.5 C29B—O7—H30 106.9 (14)
H11B—C11—H11C 109.5 Li1—O7—H30 129.6 (14)
C10—C12—H12A 109.5 O7—C29A—H29A 109.5
C10—C12—H12B 109.5 O7—C29A—H29B 109.5
H12A—C12—H12B 109.5 H29A—C29A—H29B 109.5
C10—C12—H12C 109.5 O7—C29A—H29C 109.5
H12A—C12—H12C 109.5 H29A—C29A—H29C 109.5
H12B—C12—H12C 109.5 H29B—C29A—H29C 109.5
C18—C13—C14 123.15 (9) O7—C29B—H29D 109.5
C18—C13—O4 118.19 (8) O7—C29B—H29E 109.5
C14—C13—O4 118.51 (8) H29D—C29B—H29E 109.5
C15—C14—C13 117.02 (9) O7—C29B—H29F 109.5
C15—C14—C19 119.91 (9) H29D—C29B—H29F 109.5
C13—C14—C19 123.07 (9) H29E—C29B—H29F 109.5
C16—C15—C14 121.25 (10) C31—O8—H32 108.1 (14)
C16—C15—H15A 119.4 O8—C31—H31A 109.5
C14—C15—H15A 119.4 O8—C31—H31B 109.5
C17—C16—C15 120.01 (10) H31A—C31—H31B 109.5
C17—C16—H16A 120.0 O8—C31—H31C 109.5
C15—C16—H16A 120.0 H31A—C31—H31C 109.5
C16—C17—C18 121.20 (10) H31B—C31—H31C 109.5
C16—C17—H17A 119.4
O1—P1—O2—Li1 −22.98 (11) C3—C2—C7—C9 −70.95 (12)
O3—P1—O2—Li1 −151.34 (9) C5—C6—C10—C11 34.55 (13)
O4—P1—O2—Li1 102.06 (10) C1—C6—C10—C11 −149.58 (9)
O1—P1—O3—C1 −42.03 (8) C5—C6—C10—C12 −90.02 (11)
O2—P1—O3—C1 88.89 (8) C1—C6—C10—C12 85.85 (11)
O4—P1—O3—C1 −160.39 (7) P1—O4—C13—C18 95.20 (10)
Li1—P1—O3—C1 68.81 (10) P1—O4—C13—C14 −89.13 (10)
O1—P1—O4—C13 −88.42 (8) C18—C13—C14—C15 0.30 (14)
O2—P1—O4—C13 144.44 (7) O4—C13—C14—C15 −175.14 (8)
O3—P1—O4—C13 28.84 (8) C18—C13—C14—C19 −179.32 (9)
Li1—P1—O4—C13 175.22 (8) O4—C13—C14—C19 5.24 (14)
P1—O3—C1—C2 −94.01 (10) C13—C14—C15—C16 −0.31 (15)
P1—O3—C1—C6 91.40 (10) C19—C14—C15—C16 179.32 (10)
O3—C1—C2—C3 −176.33 (8) C14—C15—C16—C17 0.00 (17)
C6—C1—C2—C3 −2.06 (14) C15—C16—C17—C18 0.36 (17)
O3—C1—C2—C7 3.54 (13) C16—C17—C18—C13 −0.38 (15)
C6—C1—C2—C7 177.81 (9) C16—C17—C18—C22 178.27 (10)
C1—C2—C3—C4 0.79 (14) C14—C13—C18—C17 0.04 (15)
C7—C2—C3—C4 −179.08 (9) O4—C13—C18—C17 175.49 (8)
C2—C3—C4—C5 0.71 (16) C14—C13—C18—C22 −178.61 (9)
C3—C4—C5—C6 −1.07 (16) O4—C13—C18—C22 −3.16 (13)
C4—C5—C6—C1 −0.11 (14) C15—C14—C19—C20 62.20 (13)
C4—C5—C6—C10 175.93 (9) C13—C14—C19—C20 −118.20 (11)
C2—C1—C6—C5 1.72 (14) C15—C14—C19—C21 −60.88 (12)
O3—C1—C6—C5 176.02 (8) C13—C14—C19—C21 118.73 (10)
C2—C1—C6—C10 −174.33 (9) C17—C18—C22—C23 28.37 (14)
O3—C1—C6—C10 −0.04 (13) C13—C18—C22—C23 −153.04 (10)
C1—C2—C7—C8 −127.00 (10) C17—C18—C22—C24 −96.23 (12)
C3—C2—C7—C8 52.86 (13) C13—C18—C22—C24 82.36 (12)
C1—C2—C7—C9 109.19 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H26···O1 0.79 (2) 2.00 (2) 2.7482 (11) 158.2 (19)
O6—H28···O8i 0.85 (2) 1.86 (2) 2.7013 (14) 174 (2)
O7—H30···O2ii 0.83 (2) 1.89 (2) 2.7152 (11) 170.7 (19)
O8—H32···O1 0.82 (2) 1.88 (2) 2.6929 (12) 171.8 (19)

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+2, −z+2.

References

  1. Blonski, C., Gasc, M.-B., Klaebe, A., Perie, J.-J., Roques, R., Declercq, J. P. & Germain, G. (1982). J. Chem. Soc. Perkin Trans. 2, pp. 7–13.
  2. Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Gerus, A. & Lis, T. (2013). Acta Cryst. E69, m464–m465. [DOI] [PMC free article] [PubMed]
  5. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  6. Hilken, S., Kaletta, F., Heinsch, A., Neudörfl, J.-M. & Berkessel, A. (2014). Eur. J. Org. Chem. pp. 2231–2241.
  7. Kommana, P. & Swamy, K. C. K. (2003). Indian J. Chem. Sect. A, 42, 1061–1063.
  8. Kosolapoff, G. M., Arpke, Ch. K., Lamb, R. W. & Reich, H. (1968). J. Chem. Soc. C, pp. 815–818.
  9. Kumara Swamy, K. C. & Kumaraswamy, S. (2001). Acta Cryst. C57, 1147–1148. [DOI] [PubMed]
  10. Kumara Swamy, K. C., Kumaraswamy, S. & Kommana, P. (2001). J. Am. Chem. Soc. 123, 12642–12649. [DOI] [PubMed]
  11. Lugmair, C. G. & Tilley, T. D. (1998). Inorg. Chem. 37, 1821–1826.
  12. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  13. Nifant’ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219–227.
  14. Nifant’ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223–1230. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Ślepokura, K. (2008). Carbohydr. Res. 343, 113–131. [DOI] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015005563/wm5137sup1.cif

e-71-00443-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015005563/wm5137Isup2.hkl

e-71-00443-Isup2.hkl (566.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015005563/wm5137Isup3.cdx

CCDC reference: 1054771

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES