Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 22;71(Pt 5):540–543. doi: 10.1107/S205698901500746X

Crystal structure of bis­[trans-(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N)bis­(thio­cyanato-κN)chromium(III)] tetra­chlorido­zincate from synchrotron data

Dohyun Moon a, Keon Sang Ryoo b, Jong-Ha Choi b,*
PMCID: PMC4420107  PMID: 25995875

The CrIII atoms in the title compound show a distorted octa­hedral coordination with four N atoms of the cyclam ligand in the equatorial plane and two N-coordinated NCS groups in axial positions. The macrocyclic ligands adopt trans-III configurations. The crystal packing is stabilized by N—H⋯S and N—H⋯Cl hydrogen bonds.

Keywords: crystal structure, synchrotron radiation, cyclam, thio­cyanate ligand, trans-III configuration, chromium(III) complex, hydrogen bonding

Abstract

The structure of the title compound, [Cr(NCS)2(cyclam)]2[ZnCl4] (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4), has been determined from synchrotron data. The asymmetric unit contains two independent halves of the CrIII complex cations and half of a tetra­chlorido­zincate anion. In each complex cation, the CrIII atom is coordinated by the four N atoms of the cyclam ligand in the equatorial plane and by two N-bound NCS anions in a trans axial arrangement, displaying a distorted octa­hedral geometry with crystallographic inversion symmetry. The mean Cr—N(cyclam) and Cr—N(NCS) bond lengths are 2.065 (4) and 1.995 (6) Å, respectively. The macrocyclic cyclam moieties adopt centrosymmetric trans-III configurations with six- and five-membered chelate rings in chair and gauche configurations, respectively. The [ZnCl4]2− anion, which lies about a twofold rotation axis, has a slightly distorted tetra­hedral geometry. The crystal packing is stabilized by hydrogen-bonding inter­actions between the N—H groups of the cyclam ligands, the S atoms of the NCS groups and the Cl ligands of the anion.

Chemical context  

In recent years, it has been found that cyclam (1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) derivatives and their metal complexes exhibit anti-HIV activity (Ronconi & Sadler, 2007; De Clercq, 2010; Ross et al., 2012). The cyclam derivatives inhibit the entry of the virus into white cells by binding to CXCR4, a chemokine receptor in the outer membrane. The strength of binding to the CXCR4 receptor correlates with the anti-HIV activity. The cyclam ligand has a moderately flexible structure, and can adopt both planar (trans) and folded (cis) configurations (Poon & Pun, 1980). There are five configurational trans isomers for this type of macrocycle, Fig. 1, that differ in the chirality of the sec-NH groups (Choi, 2009). The trans-V configuration can also fold to form the cis-V isomer (Subhan et al., 2011). In addition, the thio­cyanate anion can be present in complexes as either a ligand or a non-coordinating anion (Moon et al., 2013). Furthermore it can coordinate to metals as a terminal ligand through either the nitro­gen or the sulfur atoms, or can use both donor atoms and function as a bridging ligand.graphic file with name e-71-00540-scheme1.jpg

Figure 1.

Figure 1

Possible configurations for trans-cyclam complexes with the trans-III configuration adopted by the title compound highlighted in blue.

Counter-anionic species play a very important role in the coordination chemistry, pharmacy and biology (Fabbrizzi & Poggi, 2013) of metal complexes. Thus, we describe here the synthesis and structural characterization of trans-[Cr(NCS)2(cyclam)]2[ZnCl4], (I).

Structural commentary  

Each of the two trans-[Cr(NCS)2(cyclam)]+ cations in the structure of the title compound are generated by inversion symmetry, hence the configurations of the cyclam ligands can be described as trans-III, Fig. 1. The CrIII cations, which are located on discrete inversion centres, are coordinated by the nitro­gen atoms of the cyclam ligands that occupy equatorial sites. Two thio­cyanate anions complete the distorted octa­hedral coordination sphere binding through their N atoms in a trans configuration. The single [ZnCl4]2− anion, which lies about a twofold rotation axis, has slightly distorted tetra­hedral geometry and completes the complex salt. Fig. 2 shows an ellipsoid plot of (I), with the atom-numbering scheme. This is a second example of the structure of a trans-[Cr(NCS)]2(cyclam)]+ salt, but the previous example had a perchlorate counter-anion (Friesen et al., 1997).

Figure 2.

Figure 2

A perspective view (30% probability ellipsoids) of the two independent chromium(III) complex cations and the tetra­chlorido­zincate anion in (I). [Symmetry codes: (A′) x − 1, y, z; (B′) x, −y, z + Inline graphic; (C′) −x + 1, −y + 1, −z + 2.]

The Cr—N bond lengths from the donor atoms of the cyclam ligand range from 2.0614 (10) to 2.0700 (10) Å, and these lengths are comparable to those found in a range of related [CrL 2(cyclam)]+ complexes (Flores-Velez et al., 1991; Friesen et al., 1997; Choi, 2009; Choi, Oh, Suzuki et al., 2004; Subhan et al., 2011; Choi, Oh, Lim et al., 2004). However, they are shorter than the bonds to a primary amine as found in the related complex trans-[CrCl2(Me2tn)2]2[ZnCl4] (Me2tn = [2,2-dimethylpropane-1,3-diamine]; Choi et al., 2011). Furthermore, the mean Cr—N(NCS) distance of 1.9951 (11) Å is close the values found in other trans/cis-[Cr(NCS)2N4]+ cations (Moon & Choi, 2015; Choi & Lee, 2009; Moon et al., 2013). As is normally found with cyclam complexes, the five-membered chelate rings adopt gauche configurations while the six-membered rings are in chair configurations. The average bite angles of the five- and six-membered chelate rings around the chromium(III) atoms are 85.51 (4) and 94.49 (4)°, respectively. The N-coordinated NCS ligands are almost linear, with N—C—S angles of 177.42 (12)° in cation A and 178.66 (12)° in cation B. The C6A—S1A bond length [1.6126 (12) Å] in the Cr1A complex cation is slightly longer than the C6B–-S1B bond length [1.6056 (12) Å] in the Cr2B complex cation. This elongation may be attributed to the weak hydrogen bond formed by S1A with the N2A—H2A group of the cyclam ligand.

Supra­molecular features  

Each complex mol­ecule forms three classical N—H⋯Cl hydrogen bonds between the amine groups of the cyclam ligand in each complex cation and the Cl atoms of the tetra­chlorido­zincate anion, Table 1 (Steed & Atwood, 2009). These hydrogen bonds link the cations and anions into a three-dimensional network as shown in Fig. 3 and help to stabilize the crystal structure.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1AH1ACl2C i 0.98 2.66 3.4510(12) 138
N2AH2AS1A ii 0.98 2.60 3.4884(13) 151
N1BH1BCl1C i 0.98 2.58 3.4120(12) 143
N2BH2BCl1C iii 0.98 2.57 3.3944(13) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

The mol­ecular packing in (I), viewed along the a axis. Dashed lines represent hydrogen-bonding inter­actions N—H⋯Cl (cyan) and N—H⋯S (purple), respectively. H atoms bound to C have been omitted.

Database survey  

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014) gave only three hits for the [Cr(NCS)2(cyclam)]+ cation. Of these structures, trans-[Cr(NCS)2(cyclam)](ClO4) (Friesen et al., 1997) adopts the trans-III configuration, similar to that adopted by the title compound, while cis-[Cr(NCS)2(cyclam)](ClO4) (Friesen et al., 1997) and cis-[Cr(NCS)2(cyclam)](NCS) (Moon et al., 2013), both adopt the folded cis-V configuration. No structure of a salt of [Cr(NCS)2(cyclam)]+ with the [ZnCl4]2− anion was found.

Synthesis and crystallization  

The free ligand cyclam was purchased from Strem Chemicals and used as provided. All chemicals were reagent-grade materials and were used without further purification. The starting material, trans-[Cr(NCS)2(cyclam)]ClO4, was prepared according to the literature (Friesen et al., 1997). The perchlorate salt (0.33 g) was dissolved in 10 mL of 0.1 M HCl at 333 K and added to 7.5 mL of 6 M HCl containing 0.75 g of solid ZnCl2. The resulting solution was filtered, and allowed to stand at room temperature for two days to give pale-yellow crystals of (I) suitable for X-ray structural analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å and N—H = 0.98 Å, and with U iso(H) values of 1.2U eq of the parent atoms.

Table 2. Experimental details.

Crystal data
Chemical formula [Cr(NCS)2(C10H24N4)]2[ZnCl4]
M r 944.15
Crystal system, space group Monoclinic, P2/c
Temperature (K) 260
a, b, c () 7.9990(16), 16.532(3), 15.430(3)
() 101.36(3)
V (3) 2000.5(7)
Z 2
Radiation type Synchrotron, = 0.610
(mm1) 1.07
Crystal size (mm) 0.22 0.19 0.12
 
Data collection
Diffractometer ADSC Q210 CCD area detector diffractometer
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski Minor, 1997)
T min, T max 0.801, 0.883
No. of measured, independent and observed [I > 2(I)] reflections 20982, 5738, 5500
R int 0.018
(sin /)max (1) 0.706
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.025, 0.072, 1.06
No. of reflections 5738
No. of parameters 217
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.60, 0.58

Computer programs: PAL ADSC Quantum-210 ADX (Arvai Nielsen, 1983), HKL3000sm (Otwinowski Minor, 1997), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ), DIAMOND (Putz Brandenburg, 2014) nd publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901500746X/sj5452sup1.cif

e-71-00540-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500746X/sj5452Isup2.hkl

e-71-00540-Isup2.hkl (314.5KB, hkl)

CCDC reference: 1059896

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

supplementary crystallographic information

Crystal data

[Cr(NCS)2(C10H24N4)]2[ZnCl4] F(000) = 972
Mr = 944.15 Dx = 1.567 Mg m3
Monoclinic, P2/c Synchrotron radiation, λ = 0.610 Å
a = 7.9990 (16) Å Cell parameters from 92486 reflections
b = 16.532 (3) Å θ = 0.4–33.7°
c = 15.430 (3) Å µ = 1.07 mm1
β = 101.36 (3)° T = 260 K
V = 2000.5 (7) Å3 Block, pale yellow
Z = 2 0.22 × 0.19 × 0.12 mm

Data collection

ADSC Q210 CCD area-detector diffractometer 5500 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnet Rint = 0.018
ω scan θmax = 25.5°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements) (HKL3000smSCALEPACK; Otwinowski & Minor, 1997) h = −11→11
Tmin = 0.801, Tmax = 0.883 k = −23→23
20982 measured reflections l = −21→21
5738 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.6258P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072 (Δ/σ)max = 0.001
S = 1.06 Δρmax = 0.60 e Å3
5738 reflections Δρmin = −0.58 e Å3
217 parameters Extinction correction: SHELXL2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.013 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cr1A 0.0000 0.0000 0.5000 0.01897 (7)
S1A 0.26852 (5) 0.12583 (3) 0.28897 (3) 0.04579 (10)
N1A 0.02449 (13) 0.11498 (5) 0.55355 (7) 0.02520 (18)
H1A −0.0189 0.1129 0.6086 0.030*
N2A 0.22186 (12) −0.04305 (6) 0.57760 (7) 0.02639 (18)
H2A 0.1956 −0.0559 0.6355 0.032*
N3A 0.12441 (13) 0.03450 (6) 0.40583 (7) 0.0289 (2)
C1A −0.09496 (17) 0.16709 (7) 0.49075 (9) 0.0327 (2)
H1A1 −0.0461 0.1798 0.4396 0.039*
H1A2 −0.1155 0.2174 0.5193 0.039*
C2A 0.20038 (17) 0.14817 (7) 0.57588 (9) 0.0340 (3)
H2A1 0.1976 0.2001 0.6049 0.041*
H2A2 0.2421 0.1571 0.5217 0.041*
C3A 0.32286 (17) 0.09229 (9) 0.63584 (10) 0.0386 (3)
H3A1 0.4276 0.1217 0.6577 0.046*
H3A2 0.2733 0.0786 0.6865 0.046*
C4A 0.36743 (16) 0.01431 (9) 0.59357 (10) 0.0359 (3)
H4A1 0.4006 0.0267 0.5378 0.043*
H4A2 0.4639 −0.0110 0.6319 0.043*
C5A 0.26019 (17) −0.12134 (7) 0.53750 (9) 0.0334 (2)
H5A1 0.3391 −0.1528 0.5803 0.040*
H5A2 0.3122 −0.1113 0.4868 0.040*
C6A 0.18232 (14) 0.07189 (7) 0.35542 (8) 0.0263 (2)
Cr2B 0.5000 0.5000 1.0000 0.01881 (7)
S1B 0.26292 (6) 0.31238 (2) 1.17097 (3) 0.04295 (10)
N1B 0.33254 (12) 0.45724 (6) 0.89068 (6) 0.02683 (18)
H1B 0.2412 0.4284 0.9118 0.032*
N2B 0.35373 (12) 0.60051 (6) 1.01461 (7) 0.02692 (19)
H2B 0.2655 0.5822 1.0461 0.032*
N3B 0.37356 (14) 0.43650 (7) 1.07593 (7) 0.0310 (2)
C1B 0.43163 (18) 0.39638 (8) 0.85091 (8) 0.0351 (3)
H1B1 0.5087 0.4235 0.8191 0.042*
H1B2 0.3548 0.3627 0.8095 0.042*
C2B 0.25141 (18) 0.51949 (9) 0.82674 (9) 0.0377 (3)
H2B1 0.1736 0.4934 0.7787 0.045*
H2B2 0.3385 0.5468 0.8020 0.045*
C3B 0.15434 (18) 0.58129 (10) 0.87041 (10) 0.0429 (3)
H3B1 0.0815 0.5525 0.9034 0.051*
H3B2 0.0809 0.6119 0.8244 0.051*
C4B 0.26361 (18) 0.64063 (8) 0.93259 (10) 0.0379 (3)
H4B1 0.3467 0.6650 0.9026 0.045*
H4B2 0.1917 0.6834 0.9479 0.045*
C5B 0.46800 (18) 0.65534 (8) 1.07613 (9) 0.0353 (3)
H5B1 0.4012 0.6952 1.1006 0.042*
H5B2 0.5447 0.6835 1.0450 0.042*
C6B 0.32530 (14) 0.38445 (7) 1.11521 (8) 0.0262 (2)
Zn1C 1.0000 0.28259 (2) 0.7500 0.02829 (7)
Cl1C 0.94451 (4) 0.36436 (2) 0.86092 (2) 0.03394 (8)
Cl2C 0.77981 (5) 0.20141 (2) 0.68975 (3) 0.04336 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr1A 0.02262 (11) 0.01669 (11) 0.01964 (12) −0.00101 (7) 0.00917 (8) 0.00082 (7)
S1A 0.0498 (2) 0.0544 (2) 0.03621 (19) −0.01306 (16) 0.01597 (15) 0.01604 (15)
N1A 0.0311 (4) 0.0197 (4) 0.0267 (4) −0.0016 (3) 0.0104 (4) −0.0017 (3)
N2A 0.0272 (4) 0.0272 (4) 0.0255 (5) 0.0023 (3) 0.0069 (3) −0.0002 (3)
N3A 0.0344 (5) 0.0289 (4) 0.0269 (5) −0.0025 (4) 0.0142 (4) 0.0021 (4)
C1A 0.0423 (6) 0.0199 (5) 0.0370 (6) 0.0043 (4) 0.0105 (5) 0.0026 (4)
C2A 0.0372 (6) 0.0261 (5) 0.0404 (7) −0.0106 (4) 0.0122 (5) −0.0077 (5)
C3A 0.0330 (6) 0.0408 (7) 0.0402 (7) −0.0073 (5) 0.0030 (5) −0.0122 (5)
C4A 0.0248 (5) 0.0400 (6) 0.0426 (7) −0.0012 (5) 0.0059 (5) −0.0065 (5)
C5A 0.0346 (6) 0.0278 (5) 0.0381 (6) 0.0093 (4) 0.0079 (5) −0.0004 (4)
C6A 0.0269 (5) 0.0287 (5) 0.0246 (5) 0.0001 (4) 0.0080 (4) 0.0015 (4)
Cr2B 0.02030 (11) 0.02070 (11) 0.01588 (12) 0.00103 (7) 0.00471 (8) 0.00120 (7)
S1B 0.0606 (2) 0.02721 (15) 0.0445 (2) −0.01031 (14) 0.01873 (16) 0.00437 (13)
N1B 0.0273 (4) 0.0307 (5) 0.0210 (4) −0.0015 (3) 0.0011 (3) −0.0001 (3)
N2B 0.0268 (4) 0.0263 (4) 0.0282 (5) 0.0053 (3) 0.0067 (3) −0.0006 (3)
N3B 0.0345 (5) 0.0326 (5) 0.0276 (5) −0.0021 (4) 0.0106 (4) 0.0039 (4)
C1B 0.0422 (6) 0.0376 (6) 0.0252 (6) −0.0019 (5) 0.0058 (5) −0.0106 (5)
C2B 0.0404 (7) 0.0427 (7) 0.0243 (6) 0.0018 (5) −0.0070 (5) 0.0040 (5)
C3B 0.0340 (6) 0.0483 (8) 0.0407 (7) 0.0109 (6) −0.0067 (5) 0.0067 (6)
C4B 0.0388 (6) 0.0322 (6) 0.0404 (7) 0.0132 (5) 0.0024 (5) 0.0062 (5)
C5B 0.0401 (6) 0.0274 (5) 0.0390 (7) 0.0029 (5) 0.0087 (5) −0.0086 (5)
C6B 0.0292 (5) 0.0258 (5) 0.0244 (5) −0.0010 (4) 0.0073 (4) −0.0035 (4)
Zn1C 0.03449 (11) 0.02582 (10) 0.02644 (11) 0.000 0.01061 (7) 0.000
Cl1C 0.03853 (15) 0.03419 (15) 0.03262 (15) −0.00012 (11) 0.01562 (12) −0.00580 (10)
Cl2C 0.05010 (19) 0.04102 (17) 0.04059 (19) −0.01715 (14) 0.01290 (14) −0.00567 (13)

Geometric parameters (Å, º)

Cr1A—N3Ai 1.9991 (11) Cr2B—N1Bii 2.0614 (11)
Cr1A—N3A 1.9991 (11) Cr2B—N1B 2.0614 (11)
Cr1A—N2A 2.0622 (11) Cr2B—N2Bii 2.0700 (10)
Cr1A—N2Ai 2.0623 (11) Cr2B—N2B 2.0700 (10)
Cr1A—N1Ai 2.0664 (10) S1B—C6B 1.6056 (12)
Cr1A—N1A 2.0665 (10) N1B—C2B 1.4836 (16)
S1A—C6A 1.6126 (12) N1B—C1B 1.4861 (16)
N1A—C2A 1.4861 (16) N1B—H1B 0.9800
N1A—C1A 1.4931 (16) N2B—C4B 1.4838 (17)
N1A—H1A 0.9800 N2B—C5B 1.4887 (17)
N2A—C4A 1.4842 (16) N2B—H2B 0.9800
N2A—C5A 1.4921 (15) N3B—C6B 1.1614 (16)
N2A—H2A 0.9800 C1B—C5Bii 1.512 (2)
N3A—C6A 1.1591 (15) C1B—H1B1 0.9700
C1A—C5Ai 1.5106 (19) C1B—H1B2 0.9700
C1A—H1A1 0.9700 C2B—C3B 1.519 (2)
C1A—H1A2 0.9700 C2B—H2B1 0.9700
C2A—C3A 1.521 (2) C2B—H2B2 0.9700
C2A—H2A1 0.9700 C3B—C4B 1.522 (2)
C2A—H2A2 0.9700 C3B—H3B1 0.9700
C3A—C4A 1.5186 (19) C3B—H3B2 0.9700
C3A—H3A1 0.9700 C4B—H4B1 0.9700
C3A—H3A2 0.9700 C4B—H4B2 0.9700
C4A—H4A1 0.9700 C5B—C1Bii 1.512 (2)
C4A—H4A2 0.9700 C5B—H5B1 0.9700
C5A—C1Ai 1.5107 (19) C5B—H5B2 0.9700
C5A—H5A1 0.9700 Zn1C—Cl2Ciii 2.2632 (6)
C5A—H5A2 0.9700 Zn1C—Cl2C 2.2632 (6)
Cr2B—N3Bii 1.9911 (11) Zn1C—Cl1Ciii 2.2919 (5)
Cr2B—N3B 1.9911 (11) Zn1C—Cl1C 2.2919 (5)
N3Ai—Cr1A—N3A 180.0 N3Bii—Cr2B—N1B 91.31 (5)
N3Ai—Cr1A—N2A 88.52 (4) N3B—Cr2B—N1B 88.69 (5)
N3A—Cr1A—N2A 91.48 (4) N1Bii—Cr2B—N1B 180.0
N3Ai—Cr1A—N2Ai 91.48 (5) N3Bii—Cr2B—N2Bii 89.75 (5)
N3A—Cr1A—N2Ai 88.52 (4) N3B—Cr2B—N2Bii 90.25 (5)
N2A—Cr1A—N2Ai 180.0 N1Bii—Cr2B—N2Bii 94.26 (4)
N3Ai—Cr1A—N1Ai 90.38 (4) N1B—Cr2B—N2Bii 85.74 (4)
N3A—Cr1A—N1Ai 89.62 (4) N3Bii—Cr2B—N2B 90.25 (5)
N2A—Cr1A—N1Ai 85.28 (4) N3B—Cr2B—N2B 89.75 (5)
N2Ai—Cr1A—N1Ai 94.72 (4) N1Bii—Cr2B—N2B 85.74 (4)
N3Ai—Cr1A—N1A 89.62 (4) N1B—Cr2B—N2B 94.26 (4)
N3A—Cr1A—N1A 90.38 (4) N2Bii—Cr2B—N2B 180.0
N2A—Cr1A—N1A 94.72 (4) C2B—N1B—C1B 113.21 (10)
N2Ai—Cr1A—N1A 85.28 (4) C2B—N1B—Cr2B 115.78 (8)
N1Ai—Cr1A—N1A 180.0 C1B—N1B—Cr2B 104.87 (7)
C2A—N1A—C1A 113.14 (10) C2B—N1B—H1B 107.5
C2A—N1A—Cr1A 116.31 (7) C1B—N1B—H1B 107.5
C1A—N1A—Cr1A 105.85 (7) Cr2B—N1B—H1B 107.5
C2A—N1A—H1A 107.0 C4B—N2B—C5B 113.94 (10)
C1A—N1A—H1A 107.0 C4B—N2B—Cr2B 117.13 (8)
Cr1A—N1A—H1A 107.0 C5B—N2B—Cr2B 105.60 (7)
C4A—N2A—C5A 113.86 (10) C4B—N2B—H2B 106.5
C4A—N2A—Cr1A 115.67 (8) C5B—N2B—H2B 106.5
C5A—N2A—Cr1A 106.39 (8) Cr2B—N2B—H2B 106.5
C4A—N2A—H2A 106.8 C6B—N3B—Cr2B 163.19 (10)
C5A—N2A—H2A 106.8 N1B—C1B—C5Bii 108.88 (10)
Cr1A—N2A—H2A 106.8 N1B—C1B—H1B1 109.9
C6A—N3A—Cr1A 164.12 (10) C5Bii—C1B—H1B1 109.9
N1A—C1A—C5Ai 108.06 (10) N1B—C1B—H1B2 109.9
N1A—C1A—H1A1 110.1 C5Bii—C1B—H1B2 109.9
C5Ai—C1A—H1A1 110.1 H1B1—C1B—H1B2 108.3
N1A—C1A—H1A2 110.1 N1B—C2B—C3B 111.50 (11)
C5Ai—C1A—H1A2 110.1 N1B—C2B—H2B1 109.3
H1A1—C1A—H1A2 108.4 C3B—C2B—H2B1 109.3
N1A—C2A—C3A 112.57 (10) N1B—C2B—H2B2 109.3
N1A—C2A—H2A1 109.1 C3B—C2B—H2B2 109.3
C3A—C2A—H2A1 109.1 H2B1—C2B—H2B2 108.0
N1A—C2A—H2A2 109.1 C2B—C3B—C4B 115.66 (12)
C3A—C2A—H2A2 109.1 C2B—C3B—H3B1 108.4
H2A1—C2A—H2A2 107.8 C4B—C3B—H3B1 108.4
C4A—C3A—C2A 115.59 (12) C2B—C3B—H3B2 108.4
C4A—C3A—H3A1 108.4 C4B—C3B—H3B2 108.4
C2A—C3A—H3A1 108.4 H3B1—C3B—H3B2 107.4
C4A—C3A—H3A2 108.4 N2B—C4B—C3B 111.82 (11)
C2A—C3A—H3A2 108.4 N2B—C4B—H4B1 109.3
H3A1—C3A—H3A2 107.4 C3B—C4B—H4B1 109.3
N2A—C4A—C3A 111.76 (10) N2B—C4B—H4B2 109.3
N2A—C4A—H4A1 109.3 C3B—C4B—H4B2 109.3
C3A—C4A—H4A1 109.3 H4B1—C4B—H4B2 107.9
N2A—C4A—H4A2 109.3 N2B—C5B—C1Bii 107.44 (10)
C3A—C4A—H4A2 109.3 N2B—C5B—H5B1 110.2
H4A1—C4A—H4A2 107.9 C1Bii—C5B—H5B1 110.2
N2A—C5A—C1Ai 108.33 (10) N2B—C5B—H5B2 110.2
N2A—C5A—H5A1 110.0 C1Bii—C5B—H5B2 110.2
C1Ai—C5A—H5A1 110.0 H5B1—C5B—H5B2 108.5
N2A—C5A—H5A2 110.0 N3B—C6B—S1B 178.66 (12)
C1Ai—C5A—H5A2 110.0 Cl2Ciii—Zn1C—Cl2C 107.27 (3)
H5A1—C5A—H5A2 108.4 Cl2Ciii—Zn1C—Cl1Ciii 114.02 (2)
N3A—C6A—S1A 177.42 (12) Cl2C—Zn1C—Cl1Ciii 107.01 (2)
N3Bii—Cr2B—N3B 180.00 (5) Cl2Ciii—Zn1C—Cl1C 107.01 (2)
N3Bii—Cr2B—N1Bii 88.69 (5) Cl2C—Zn1C—Cl1C 114.02 (2)
N3B—Cr2B—N1Bii 91.31 (4) Cl1Ciii—Zn1C—Cl1C 107.71 (2)
C2A—N1A—C1A—C5Ai 171.46 (10) C2B—N1B—C1B—C5Bii 170.70 (11)
Cr1A—N1A—C1A—C5Ai 42.96 (11) Cr2B—N1B—C1B—C5Bii 43.59 (12)
C1A—N1A—C2A—C3A −176.86 (10) C1B—N1B—C2B—C3B −178.93 (11)
Cr1A—N1A—C2A—C3A −53.99 (13) Cr2B—N1B—C2B—C3B −57.79 (14)
N1A—C2A—C3A—C4A 69.83 (15) N1B—C2B—C3B—C4B 72.48 (16)
C5A—N2A—C4A—C3A −179.00 (11) C5B—N2B—C4B—C3B 177.65 (11)
Cr1A—N2A—C4A—C3A 57.31 (14) Cr2B—N2B—C4B—C3B 53.73 (14)
C2A—C3A—C4A—N2A −71.67 (16) C2B—C3B—C4B—N2B −69.85 (17)
C4A—N2A—C5A—C1Ai −169.58 (11) C4B—N2B—C5B—C1Bii −172.02 (11)
Cr1A—N2A—C5A—C1Ai −40.99 (11) Cr2B—N2B—C5B—C1Bii −42.08 (11)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x+2, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···Cl2Civ 0.98 2.66 3.4510 (12) 138
N2A—H2A···S1Av 0.98 2.60 3.4884 (13) 151
N1B—H1B···Cl1Civ 0.98 2.58 3.4120 (12) 143
N2B—H2B···Cl1Cii 0.98 2.57 3.3944 (13) 142

Symmetry codes: (ii) −x+1, −y+1, −z+2; (iv) x−1, y, z; (v) x, −y, z+1/2.

References

  1. Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.
  2. Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.
  3. Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.
  4. Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.
  5. Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004). Acta Cryst. C60, m238–m240. [DOI] [PubMed]
  6. Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct. 694, 39–44.
  7. De Clercq, E. (2010). J. Med. Chem. 53, 1438–1450. [DOI] [PubMed]
  8. Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699. [DOI] [PubMed]
  9. Flores-Velez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscanoh, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243–3247.
  10. Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691.
  11. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  12. Moon, D. & Choi, J.-H. (2015). Acta Cryst. E71, 100–103. [DOI] [PMC free article] [PubMed]
  13. Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377. [DOI] [PMC free article] [PubMed]
  14. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  15. Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569.
  16. Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  17. Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.
  18. Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed., New York: John Wiley & Sons.
  22. Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901500746X/sj5452sup1.cif

e-71-00540-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500746X/sj5452Isup2.hkl

e-71-00540-Isup2.hkl (314.5KB, hkl)

CCDC reference: 1059896

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES