Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 9;71(Pt 5):o291–o292. doi: 10.1107/S2056989015006301

Crystal structure of ethyl 2-{4-[(5-chloro-1-benzo­furan-2-yl)meth­yl]-3-methyl-6-oxo-1,6-di­hydro­pyridazin-1-yl}acetate

Youness Boukharsa a,*, Lahcen El Ammari b, Jamal Taoufik a, Mohamed Saadi b, M’hammed Ansar a
PMCID: PMC4420114  PMID: 25995910

Abstract

In the title compound, C18H17ClN2O4, the dihedral angle between the benzofuran ring system [maximum deviation 0.014 (2) Å] and the oxopyradizine ring is 73.33 (8)°. The structure is characterized by disorder of the ethyl group, which is split into two parts, with a major component of 0.57 (3), and the acetate carbonyl O atom, which is statistically disordered. In the crystal, the molecules are linked by C—H⋯O inter­actions, forming a three-dimensional network.

Keywords: crystal structure, pyridazinone derivative, hydrogen bonding

Related literature  

For pharmacological activities of pyridazinones, e.g. anti­microbial, see: Boukharsa et al. (2014); Nagle et al. (2014); El-Hashash et al. (2014); Tiryaki et al. (2013); Csókás et al. (2013); Asif et al. (2014); Garkani-Nejad & Poshteh-Shirani (2013). For biological activities of pyridazinone derivatives and their applications, e.g. as insecticides and herbicides, see: Cao et al. (2003); Jamet & Piedallu (1975). For pyridazin-3(2H)-one derivatives, see: Taoufik et al. (1984); Benchat et al. (1998); Abourichaa et al. (2003).graphic file with name e-71-0o291-scheme1.jpg

Experimental  

Crystal data  

  • C18H17ClN2O4

  • M r = 360.79

  • Orthorhombic, Inline graphic

  • a = 7.9792 (2) Å

  • b = 8.7460 (2) Å

  • c = 25.2064 (6) Å

  • V = 1759.06 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.37 × 0.34 × 0.29 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.589, T max = 0.746

  • 12689 measured reflections

  • 4925 independent reflections

  • 3350 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.114

  • S = 1.02

  • 4925 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000), 2104 Friedel pairs

  • Absolute structure parameter: 0.02 (7)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015006301/tk5363sup1.cif

e-71-0o291-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015006301/tk5363Isup2.hkl

e-71-0o291-Isup2.hkl (241.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015006301/tk5363Isup3.cml

. DOI: 10.1107/S2056989015006301/tk5363fig1.tif

Mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

. DOI: 10.1107/S2056989015006301/tk5363fig2.tif

Crystal packing in the structure of the title compound, showing mol­ecules linked by C—H⋯O hydrogen bonds (dashed lines).

CCDC reference: 1056731

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C6H6O3B i 0.93 2.37 3.291(19) 170
C15H15BO2ii 0.97 2.34 3.278(3) 161
C18AH18AO2iii 0.96 2.41 3.310(10) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements, and the University Mohammed V, Rabat, Morocco, for financial support.

supplementary crystallographic information

S1. Comment

During recent years, pyridazinones have been a subject of numerous recent studies (Boukharsa et al., 2014) owing to their wide spectrum of pharmacological activities such as antimicrobial (Nagle et al., 2014), anti-fungal (El-Hashash et al., 2014), analgesic & anti-inflammatory (Tiryaki et al., 2013), anticancer (Csókás et al., 2013), anti-tubercular (Asif et al., 2014) and anti-hypertensive activities (Garkani-Nejad & Poshteh-Shirani, 2013). It has also been reported that pyridazinone derivative have remarkable insecticidal (Cao et al., 2003) and herbicidal activities (Jamet & Piedallu, 1975). In continuation of this line of research (Taoufik et al., 1984; Benchat et al., 1998; Abourichaa et al., 2003), we have developed a new pyridazin-3(2H)-one derivative. It will be subjected to further pharmacological investigations, especially tests of anticancer activity. Compound (I) is stable at room temperature, and its structure has been determined by NMR (1H and 13 C). In this paper we wish to report the crystal structure determination of the title compound possessing the biologically active pyridazinone ring.

The molecule of the title compound is build up from 5-chlorobenzofuran-2-yl linked, via –CH2– group, to six-membered heterocyclic ring which is related to acetate group as shown in Fig. 1. The benzofuran system is virtually planar with the largest deviation from the mean plane being -0.014 (2) Å at C4, and makes dihedral angle of 73.33 (8)° with the mean plane through the oxopyridazin (C10–C13,N1,N2) ring. Non classical C—H···O hydrogen bonds link the molecules into a three-dimensional network.

S2. Experimental

To a solution of 5-((5-chlorobenzofuran-2-yl)methyl)-6-methylpyridazin-3(2H)-one (0.5 g, 1.82 mmol) dissolved in tetrahydrofuran (15 ml) was added ethyl 2-bromoacetate (0.30 ml, 2.73 mmol), potassium carbonate (0.5 g, 3.64 mmol) and a catalytic amount of tetra-n-butylammonium bromide (0.05 g, 0.15 mmol). The mixture was stirred at room temperature for 6 h, and monitored by thin layer chromatography. The compound was removed by filtration and the filtrate concentrated under vacuum. The solid obtained was crystallized from ethanol to afford colourless crystals (Yield = 77%; M.pt = 136.9 °C).

S3. Refinement

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl), and with Uiso(H) = 1.2 Ueq (aromatic and methylene) and Uiso(H) = 1.5 Ueq for methyl. This structure is characterized by a partial disorder at the acetate group, with the ethyl group split into two parts. The major component had a site occupancy factor = 0.57 (3). The carbonyl-O3 was statistically disordered. Owing to poor agreement, the (0 0 2) reflection was omitted from the final cycles of refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

Crystal packing in the structure of the title compound, showing molecules linked by C—H···O hydrogen bonds (dashed lines).

Crystal data

C18H17ClN2O4 F(000) = 752
Mr = 360.79 Dx = 1.362 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2ac 2ab Cell parameters from 4925 reflections
a = 7.9792 (2) Å θ = 2.5–29.6°
b = 8.7460 (2) Å µ = 0.24 mm1
c = 25.2064 (6) Å T = 296 K
V = 1759.06 (7) Å3 Block, colourless
Z = 4 0.37 × 0.34 × 0.29 mm

Data collection

Bruker APEXII CCD diffractometer 4925 independent reflections
Radiation source: fine-focus sealed tube 3350 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
ω and φ scans θmax = 29.6°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→6
Tmin = 0.589, Tmax = 0.746 k = −12→11
12689 measured reflections l = −35→34

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.0996P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.043
4925 reflections Δρmax = 0.25 e Å3
255 parameters Δρmin = −0.34 e Å3
0 restraints Absolute structure: Flack & Bernardinelli (2000), 2104 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.02 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.0331 (3) 0.7077 (3) 0.55647 (8) 0.0497 (5)
C2 −0.0495 (3) 0.7389 (3) 0.50905 (9) 0.0551 (6)
H2 −0.1006 0.8335 0.5042 0.066*
C3 −0.0561 (3) 0.6314 (3) 0.46924 (8) 0.0500 (5)
H3 −0.1101 0.6507 0.4372 0.060*
C4 0.0215 (2) 0.4935 (2) 0.47935 (7) 0.0408 (4)
C5 0.1023 (2) 0.4581 (2) 0.52669 (7) 0.0401 (5)
C6 0.1087 (3) 0.5691 (3) 0.56674 (8) 0.0493 (6)
H6 0.1618 0.5500 0.5989 0.059*
C7 0.1597 (3) 0.3032 (3) 0.52045 (8) 0.0448 (5)
H7 0.2188 0.2460 0.5453 0.054*
C8 0.1118 (3) 0.2568 (3) 0.47190 (8) 0.0431 (5)
C9 0.1316 (3) 0.1120 (3) 0.44154 (8) 0.0472 (5)
H9A 0.0220 0.0785 0.4297 0.057*
H9B 0.1755 0.0342 0.4652 0.057*
C10 0.2463 (2) 0.1236 (2) 0.39358 (7) 0.0368 (4)
C11 0.3432 (2) 0.2461 (2) 0.38377 (7) 0.0414 (4)
H11 0.3383 0.3299 0.4064 0.050*
C12 0.4547 (3) 0.2499 (2) 0.33859 (8) 0.0409 (4)
C13 0.2541 (2) −0.0037 (3) 0.35783 (7) 0.0384 (4)
C14 0.1523 (3) −0.1455 (3) 0.36636 (9) 0.0514 (5)
H14A 0.1751 −0.2173 0.3385 0.077*
H14B 0.0353 −0.1198 0.3662 0.077*
H14C 0.1812 −0.1902 0.3999 0.077*
C15 0.5492 (3) 0.1158 (3) 0.25914 (8) 0.0460 (5)
H15A 0.5611 0.2173 0.2441 0.055*
H15B 0.4950 0.0513 0.2329 0.055*
C16 0.7196 (3) 0.0523 (3) 0.27179 (9) 0.0570 (6)
C17A 0.9885 (15) 0.004 (2) 0.2313 (4) 0.090 (4) 0.57 (3)
H17A 1.0439 0.0692 0.2571 0.108* 0.57 (3)
H17B 0.9939 −0.0998 0.2446 0.108* 0.57 (3)
C18A 1.0731 (14) 0.0109 (18) 0.1866 (4) 0.115 (5) 0.57 (3)
H18A 1.1866 −0.0209 0.1927 0.173* 0.57 (3)
H18B 1.0723 0.1140 0.1735 0.173* 0.57 (3)
H18C 1.0220 −0.0555 0.1609 0.173* 0.57 (3)
C17B 0.967 (2) −0.045 (3) 0.2318 (8) 0.136 (9) 0.43 (3)
H17C 1.0491 0.0111 0.2524 0.164* 0.43 (3)
H17D 0.9406 −0.1378 0.2511 0.164* 0.43 (3)
C18B 1.027 (3) −0.078 (5) 0.1915 (11) 0.201 (15) 0.43 (3)
H18D 1.1232 −0.1419 0.1977 0.302* 0.43 (3)
H18E 1.0608 0.0124 0.1729 0.302* 0.43 (3)
H18F 0.9469 −0.1334 0.1705 0.302* 0.43 (3)
N1 0.3493 (2) −0.0030 (2) 0.31573 (6) 0.0420 (4)
N2 0.4446 (2) 0.12399 (19) 0.30664 (6) 0.0407 (4)
O1 0.02722 (17) 0.37131 (17) 0.44539 (5) 0.0441 (3)
O2 0.5521 (2) 0.35450 (19) 0.32838 (6) 0.0604 (4)
O3A 0.776 (2) 0.037 (5) 0.3148 (7) 0.069 (5) 0.50 (10)
O3B 0.756 (4) −0.019 (7) 0.3125 (11) 0.088 (6) 0.50 (10)
O4 0.8114 (2) 0.0497 (3) 0.22828 (6) 0.0776 (7)
Cl1 0.04000 (9) 0.85141 (8) 0.60423 (3) 0.0730 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0478 (12) 0.0520 (13) 0.0493 (11) −0.0015 (11) 0.0142 (10) −0.0084 (11)
C2 0.0546 (14) 0.0482 (12) 0.0626 (13) 0.0075 (12) 0.0102 (11) 0.0050 (12)
C3 0.0488 (12) 0.0569 (13) 0.0443 (10) 0.0067 (11) 0.0026 (9) 0.0085 (11)
C4 0.0382 (10) 0.0484 (11) 0.0358 (9) −0.0006 (9) 0.0078 (8) −0.0005 (9)
C5 0.0345 (10) 0.0498 (12) 0.0359 (9) 0.0013 (8) 0.0070 (8) 0.0022 (10)
C6 0.0447 (12) 0.0665 (15) 0.0367 (10) −0.0003 (10) 0.0053 (9) −0.0045 (11)
C7 0.0416 (11) 0.0528 (13) 0.0401 (10) 0.0069 (9) 0.0050 (9) 0.0063 (10)
C8 0.0390 (11) 0.0473 (12) 0.0430 (10) 0.0028 (9) 0.0124 (9) 0.0046 (10)
C9 0.0465 (12) 0.0468 (12) 0.0483 (11) −0.0017 (10) 0.0151 (9) −0.0004 (11)
C10 0.0324 (9) 0.0403 (11) 0.0377 (9) 0.0021 (8) 0.0025 (7) −0.0010 (9)
C11 0.0407 (11) 0.0402 (11) 0.0433 (10) −0.0007 (9) 0.0069 (8) −0.0071 (9)
C12 0.0364 (10) 0.0396 (10) 0.0466 (10) −0.0023 (9) 0.0049 (8) −0.0003 (9)
C13 0.0342 (9) 0.0410 (11) 0.0400 (9) −0.0008 (8) −0.0001 (8) −0.0031 (9)
C14 0.0514 (13) 0.0480 (13) 0.0549 (12) −0.0116 (11) 0.0066 (10) −0.0053 (12)
C15 0.0453 (11) 0.0537 (13) 0.0390 (10) 0.0022 (11) 0.0098 (9) −0.0005 (10)
C16 0.0521 (13) 0.0725 (18) 0.0463 (12) 0.0110 (12) 0.0144 (11) 0.0093 (13)
C17A 0.061 (5) 0.144 (10) 0.064 (4) 0.038 (5) −0.005 (4) 0.003 (6)
C18A 0.061 (5) 0.197 (12) 0.088 (6) 0.058 (6) 0.045 (4) 0.051 (8)
C17B 0.068 (7) 0.191 (18) 0.150 (13) 0.082 (9) 0.079 (8) 0.109 (12)
C18B 0.098 (14) 0.31 (4) 0.195 (19) 0.098 (18) −0.032 (12) −0.15 (2)
N1 0.0421 (9) 0.0420 (10) 0.0420 (9) −0.0047 (7) 0.0043 (7) −0.0046 (8)
N2 0.0385 (9) 0.0433 (9) 0.0403 (8) −0.0028 (8) 0.0092 (7) −0.0037 (8)
O1 0.0458 (8) 0.0520 (9) 0.0345 (6) 0.0025 (7) 0.0015 (6) −0.0032 (7)
O2 0.0626 (10) 0.0545 (10) 0.0640 (9) −0.0194 (9) 0.0233 (8) −0.0068 (9)
O3A 0.063 (4) 0.096 (10) 0.047 (4) 0.021 (5) 0.006 (3) 0.022 (5)
O3B 0.086 (7) 0.110 (15) 0.069 (5) 0.038 (8) 0.029 (4) 0.046 (7)
O4 0.0519 (10) 0.1259 (19) 0.0549 (9) 0.0329 (11) 0.0193 (8) 0.0216 (11)
Cl1 0.0791 (5) 0.0674 (4) 0.0725 (4) −0.0034 (4) 0.0133 (3) −0.0271 (3)

Geometric parameters (Å, º)

C1—C6 1.378 (3) C13—C14 1.498 (3)
C1—C2 1.392 (3) C14—H14A 0.9600
C1—Cl1 1.742 (2) C14—H14B 0.9600
C2—C3 1.376 (3) C14—H14C 0.9600
C2—H2 0.9300 C15—N2 1.461 (2)
C3—C4 1.380 (3) C15—C16 1.504 (3)
C3—H3 0.9300 C15—H15A 0.9700
C4—O1 1.370 (2) C15—H15B 0.9700
C4—C5 1.391 (3) C16—O3A 1.182 (17)
C5—C6 1.401 (3) C16—O3B 1.234 (17)
C5—C7 1.439 (3) C16—O4 1.319 (2)
C6—H6 0.9300 C17A—C18A 1.316 (15)
C7—C8 1.345 (3) C17A—O4 1.470 (12)
C7—H7 0.9300 C17A—H17A 0.9700
C8—O1 1.380 (3) C17A—H17B 0.9700
C8—C9 1.488 (3) C18A—H18A 0.9600
C9—C10 1.520 (3) C18A—H18B 0.9600
C9—H9A 0.9700 C18A—H18C 0.9600
C9—H9B 0.9700 C17B—C18B 1.16 (3)
C10—C11 1.344 (3) C17B—O4 1.493 (18)
C10—C13 1.434 (3) C17B—H17C 0.9700
C11—C12 1.446 (3) C17B—H17D 0.9700
C11—H11 0.9300 C18B—H18D 0.9600
C12—O2 1.228 (2) C18B—H18E 0.9600
C12—N2 1.367 (3) C18B—H18F 0.9600
C13—N1 1.305 (2) N1—N2 1.365 (2)
C6—C1—C2 122.8 (2) H14A—C14—H14C 109.5
C6—C1—Cl1 119.41 (17) H14B—C14—H14C 109.5
C2—C1—Cl1 117.82 (18) N2—C15—C16 111.14 (17)
C3—C2—C1 120.7 (2) N2—C15—H15A 109.4
C3—C2—H2 119.7 C16—C15—H15A 109.4
C1—C2—H2 119.7 N2—C15—H15B 109.4
C2—C3—C4 116.43 (19) C16—C15—H15B 109.4
C2—C3—H3 121.8 H15A—C15—H15B 108.0
C4—C3—H3 121.8 O3A—C16—O3B 24.8 (15)
O1—C4—C3 125.54 (18) O3A—C16—O4 123.2 (9)
O1—C4—C5 110.30 (18) O3B—C16—O4 123.6 (10)
C3—C4—C5 124.13 (19) O3A—C16—C15 125.6 (9)
C4—C5—C6 118.7 (2) O3B—C16—C15 124.9 (11)
C4—C5—C7 105.27 (18) O4—C16—C15 109.41 (19)
C6—C5—C7 136.0 (2) C18A—C17A—O4 115.8 (9)
C1—C6—C5 117.23 (19) C18A—C17A—H17A 108.3
C1—C6—H6 121.4 O4—C17A—H17A 108.3
C5—C6—H6 121.4 C18A—C17A—H17B 108.3
C8—C7—C5 107.06 (19) O4—C17A—H17B 108.3
C8—C7—H7 126.5 H17A—C17A—H17B 107.4
C5—C7—H7 126.5 C17A—C18A—H18A 109.5
C7—C8—O1 111.11 (19) C17A—C18A—H18B 109.5
C7—C8—C9 134.0 (2) H18A—C18A—H18B 109.5
O1—C8—C9 114.88 (17) C17A—C18A—H18C 109.5
C8—C9—C10 114.63 (18) H18A—C18A—H18C 109.5
C8—C9—H9A 108.6 H18B—C18A—H18C 109.5
C10—C9—H9A 108.6 C18B—C17B—O4 115.6 (19)
C8—C9—H9B 108.6 C18B—C17B—H17C 108.3
C10—C9—H9B 108.6 O4—C17B—H17C 108.4
H9A—C9—H9B 107.6 C18B—C17B—H17D 108.5
C11—C10—C13 118.60 (17) O4—C17B—H17D 108.4
C11—C10—C9 123.06 (18) H17C—C17B—H17D 107.4
C13—C10—C9 118.33 (18) C17B—C18B—H18D 109.4
C10—C11—C12 121.13 (18) C17B—C18B—H18E 109.6
C10—C11—H11 119.4 H18D—C18B—H18E 109.5
C12—C11—H11 119.4 C17B—C18B—H18F 109.4
O2—C12—N2 120.95 (17) H18D—C18B—H18F 109.5
O2—C12—C11 124.88 (19) H18E—C18B—H18F 109.5
N2—C12—C11 114.17 (17) C13—N1—N2 117.70 (16)
N1—C13—C10 122.17 (19) N1—N2—C12 126.10 (15)
N1—C13—C14 115.89 (18) N1—N2—C15 114.57 (16)
C10—C13—C14 121.94 (17) C12—N2—C15 119.25 (16)
C13—C14—H14A 109.5 C4—O1—C8 106.25 (15)
C13—C14—H14B 109.5 C16—O4—C17A 119.7 (5)
H14A—C14—H14B 109.5 C16—O4—C17B 114.9 (7)
C13—C14—H14C 109.5 C17A—O4—C17B 17.9 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O3Bi 0.93 2.37 3.291 (19) 170
C15—H15B···O2ii 0.97 2.34 3.278 (3) 161
C18A—H18A···O2iii 0.96 2.41 3.310 (10) 156

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5363).

References

  1. Abourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., Mimouni, M., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o1041–o1042.
  2. Asif, M., Singh, A. & Lakshmayya, L. (2014). Am. J. Pharmacol. Sci. 2, 1–6.
  3. Benchat, N.-E., Taoufik, J., Essassi, E.-M., Ramdani, A., El-Bali, B. & Bolte, M. (1998). Acta Cryst. C54, 964–966.
  4. Boukharsa, Y., Zaoui, Y., Taoufik, J. & Ansar, M. (2014). J. Chem. Pharm. Res. 6, 297–310.
  5. Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cao, S., Qian, X., Song, G., Chai, B. & Jiang, Z. (2003). J. Agric. Food Chem. 51, 152–155. [DOI] [PubMed]
  7. Csókás, D., Zupkó, I., Károlyi, B. I., Drahos, L., Holczbauer, T., Palló, A., Czugler, M. & Csámpai, A. (2013). J. Organomet. Chem. 743, 130–138.
  8. El-Hashash, M., Guirguis, D., Abd El-Wahed, N. & Kadhim, M. (2014). J Chem. Eng. Process. Technol. 5, 72–78.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.
  11. Garkani-Nejad, Z. & Poshteh-Shirani, M. (2013). Med. Chem. Res. 22, 3389–3397.
  12. Jamet, P. & Piedallu, M.-A. (1975). Weed Res. 15, 113–121.
  13. Nagle, P., Pawar, Y., Sonawane, A., Bhosale, S. & More, D. (2014). Med. Chem. Res. 23, 918–926.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Taoufik, J., Couquelet, J. D., Couquelet, J. M. & Carpy, A. (1984). J. Heterocycl. Chem. 21, 305–310.
  17. Tiryaki, D., Sukuroglu, M., Dogruer, D., Akkol, E., Ozgen, S. & Sahin, M. F. (2013). Med. Chem. Res. 22, 2553–2560.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015006301/tk5363sup1.cif

e-71-0o291-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015006301/tk5363Isup2.hkl

e-71-0o291-Isup2.hkl (241.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015006301/tk5363Isup3.cml

. DOI: 10.1107/S2056989015006301/tk5363fig1.tif

Mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

. DOI: 10.1107/S2056989015006301/tk5363fig2.tif

Crystal packing in the structure of the title compound, showing mol­ecules linked by C—H⋯O hydrogen bonds (dashed lines).

CCDC reference: 1056731

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES