Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 9;71(Pt 5):459–462. doi: 10.1107/S2056989015006520

Crystal structure of poly[μ2-aqua-aqua­(μ2-4-nitro-2,5,6-trioxo-1,2,5,6-tetra­hydro­pyridin-3-olato)hemi-μ4-oxalato-barium(II)]

Rusul Alabada a,*, Olga Kovalchukova b, Irina Polyakova c, Svetlana Strashnova b, Vladimir Sergienko c
PMCID: PMC4420117  PMID: 25995855

In a Ba coordination polymer incorporating 4-nitro-2,5,6-trioxo-1,2,5,6-tetra­hydro­pyridin-3-olate, oxalate and aqua ligands, the complex monomers are connected into polymeric two-dimensional layers parallel to the bc plane. Inter­molecular O—H⋯O hydrogen bonds link these layers into a three-dimensional supra­molecular framework.

Keywords: crystal structure, two-dimensional coordination polymer, barium(II) compound, oxalate

Abstract

In the title coordination polymer, [Ba(C5HN2O6)(C2O4)0.5(H2O)2]n, the tenfold coordination of the Ba centre consists of four O atoms from the two 4-nitro-2,5,6-trioxo-1,2,5,6-tetra­hydro­pyridin-3-olate (L) anions, three O atoms of two oxalate anions and three water mol­ecules. The Ba—O bond lengths fall in the range 2.698 (3)–2.978 (3) Å. The L ligand chelates two Ba atoms related by a screw axis, leading to formation of fused five- and six-membered chelate rings. Due to the bridging function of the ligands and water mol­ecules, the complex monomers are connected into polymeric two-dimensional layers parallel to the bc plane. Inter­molecular O—H⋯O hydrogen bonds link these layers into a three-dimensional supra­molecular framework.

Chemical context  

Mixed ligand coordination polymers containing bridging oxalate anions and 1,2-dicarbonyl carbocyclic or heterocyclic compounds exhibit high reactivity and different types of magnetism (Aldoshin, 2008; Coronado et al., 2007; Kitagawa & Kawata, 2002; Kovalchukova & Strashnova, 2014; Ohba & Okawa, 2000). Such compounds are of chemical inter­est, since a large number of potential donors available in the ligands predetermine a variety of coordination modes, which afford different geometries and dimensionalities of coordination polymers. Recently, we reported the synthesis, crystal structure and some properties of metal complexes of the 2,3,5,6-tetra­oxo-4-nitro-4-idene anion (Kovalchukova et al., 2014, 2014; Dinh Do et al., 2013). The above-mentioned anion does not replace the water mol­ecules from the inner sphere of the hydrated metal cations [M(H2O)6]n+, but can coordinate metal centres like sodium and silver(I). In the present paper, we report the mol­ecular and crystal structure of a mixed-ligand barium complex containing 4-nitro-2,5,6-trioxo-1,2,5,6-tetra­hydro­pyridin-3-olate (L) and oxalate anions as ligands.graphic file with name e-71-00459-scheme1.jpg

Structural commentary  

In the title compound, [Ba(C5HN2O6)(C2O4)0.5(H2O)2]n, (I) (Fig. 1), the tenfold coordination of the Ba1 atom (Table 1) is formed by the O2, O5, O1 and O2 atoms of two 4-nitro-2,3,5,6-tetra­oxo­pyridine-4-ide anions (L), the O7, O8 and O7A atoms of two oxalate anions, and the O9, O9A and O10 atoms of water mol­ecules. The Ba—O bond lengths fall in the range 2.698 (3)–2.978 (3) Å, which is typical for ten-coordinate barium complexes containing oxalate anions (Viciano-Chumillas et al., 2010; Heinl et al., 2002; Marinescu et al., 2005; Belombe et al., 2003, 2012; Larsson, 2001; Bouayad et al., 1995; Iveson et al., 2011). The L anion has a flattened skeleton. The r.m.s. deviation of the six ring atoms from their mean plane is 0.0256 Å; the O2 and O4 atoms lie in this plane deviating by 0.049 (3) and 0.010 (3) Å, respectively, whereas the O1 and O3 atoms deviate from it by 0.171 (3) and 0.077 (3) Å, respectively. The plane of the nitro group is rotated by 11.9 (8)° with respect to the ring plane. The L ligand chelates two Ba atoms related by a screw axis forming fused chelate rings. The six-membered ring is almost planar (r.m.s. deviation = 0.0353 Å) and the five–membered ring is folded along the O1—O2 line by 19.0°. The geometry of the L anion in the Ba complex is close to that in the compounds studied earlier (Kovalchukova et al., 2014; Dinh Do et al., 2013). All C=O bonds are of the double-bond type [1.200 (5)–1.229 (5) Å]. The monodentate coordination of L via the O atom of a nitro group attached to a benzene ring is in accordance with Venkatasubramanian et al. (1984), Harrowfield et al. (1998) and Chantrapromma et al. (2002). The centrosymmetric oxalate anion connects four Ba atoms closing two almost planar five–membered rings (r.m.s. deviation of rings = 0.0415 Å).

Figure 1.

Figure 1

View of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids. [Symmetry codes: (i) −x, y + Inline graphic, −z + Inline graphic; (ii) −x, −y + 1, −z + 1; (iii) −x, y − Inline graphic, −z + Inline graphic.]

Table 1. Selected bond lengths ().

Ba1O8i 2.698(3) Ba1O10 2.882(4)
Ba1O7 2.728(3) Ba1O1iii 2.889(3)
Ba1O9 2.755(3) Ba1O5 2.914(4)
Ba1O7ii 2.805(3) Ba1O2 2.931(3)
Ba1O9iii 2.860(3) Ba1O2iii 2.978(3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

Due to the bridging function of the L ligand and the O9 water mol­ecule, the hydrated complex cations [Ba(L)(H2O)2]+ form wide zigzag bands running along the screw axes in the b-axis direction (Fig. 2). Oxalate anions connect the bands into thick two-dimensional networks parallel to bc. The networks have corrugated surfaces with terminal O3, O4 and O6 atoms of the L ligand on the ‘hills’ and water mol­ecules in the ‘hollows’. In the packing (Fig. 3), the ‘hills’ enter the ‘hollows’ of adjacent networks. Two-centre hydrogen bonds O9—H2⋯O3 and O10—H5⋯O4 and three-centre bonds O10—H4⋯(O3,O6) (Table 2) link the networks into a three-dimensional framework. Hydrogen bonds N1—H1⋯O6 and O9—H3⋯O8 link the elements of a band and a network, respectively.

Figure 2.

Figure 2

One-dimensional polymeric chain in (I). Oxalato ligands omitted for clarity.

Figure 3.

Figure 3

two-dimensional polymeric layer in (I) viewed approximately along the a axis.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1O6i 0.86 2.21 3.052(5) 166
O9H2O3ii 0.82 2.10 2.877(4) 158
O9H3O8i 0.82 1.84 2.639(4) 163
O10H4O3ii 0.82 2.14 2.828(5) 141
O10H4O6ii 0.82 2.30 3.010(5) 146
O10H5O4iii 0.82 2.41 3.210(5) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Database survey  

The synthesis, crystal structure and some properties of metal complexes of the 4-nitro-2,3,5,6-tetraoxo-4-idene anion are described in Kovalchukova et al. (2014) and Dinh Do et al. (2013). Model structures of complexes containing carbocyclic polyoxo compounds are reviewed in Kitagawa & Kawata (2002) and Kovalchukova & Strashnova (2014). Ten coordinated structures of Ba cations with oxalate anions containing other O-donating ligands have been described (Viciano-Chumillas et al., 2010; Marinescu et al., 2005; Belombe et al., 2003, 2012; Larsson, 2001; Bouayad et al., 1995; Iveson et al., 2011). Monodentate coordination via the O atom of a nitro aromatic group is described by Venkatasubramanian et al. (1984), Harrowfield et al. (1998) and Chantrapromma et al. (2002).

Synthesis and crystallization  

Single crystals of (I) were grown by the slow evaporation of an ethanol solution of a 1:1:1 molar mixture of barium chloride, ammonium oxalate and ammonium 2,3,5,6-tetraoxo-4-nitro-4-inide.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms of water mol­ecules were localized in a difference map; O—H distances were normalized. The position of the amino H atom was calculated. All H atoms were refined within the riding model, with U iso(H) = 1.2U eq of the parent atom. The crystal studied was a twin without superposition of reciprocal lattices. Apparently, an accidental overlapping of reflections of two domains is responsible for increased displacement ellipsoids of some atoms. The U ij components of atom O5 were restrained to approximate the isotropic behaviour.

Table 3. Experimental details.

Crystal data
Chemical formula [Ba(C5HN2O6)(C2O4)0.5(H2O)2]
M r 804.92
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c () 10.3283(11), 7.9868(8), 13.0760(14)
() 96.419(2)
V (3) 1071.88(19)
Z 2
Radiation type Mo K
(mm1) 3.76
Crystal size (mm) 0.16 0.12 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.586, 0.746
No. of measured, independent and observed [I > 2(I)] reflections 11240, 3410, 2692
R int 0.036
(sin /)max (1) 0.736
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.038, 0.093, 1.05
No. of reflections 3410
No. of parameters 172
No. of restraints 6
H-atom treatment H-atom parameters constrained
max, min (e 3) 2.31, 1.67

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP (Johnson Burnett, 1996) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015006520/cv5485sup1.cif

e-71-00459-sup1.cif (350.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015006520/cv5485Isup2.hkl

e-71-00459-Isup2.hkl (187.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015006520/cv5485Isup3.mol

CCDC reference: 1057170

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The research was supported by the Russian Foundation for Basic Research (grant No. 13-03-00079).

supplementary crystallographic information

Crystal data

[Ba(C5HN2O6)(C2O4)0.5(H2O)2] F(000) = 764
Mr = 804.92 Dx = 2.494 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.3283 (11) Å Cell parameters from 3977 reflections
b = 7.9868 (8) Å θ = 3.0–31.4°
c = 13.0760 (14) Å µ = 3.76 mm1
β = 96.419 (2)° T = 296 K
V = 1071.88 (19) Å3 Plate, brown
Z = 2 0.16 × 0.12 × 0.03 mm

Data collection

Bruker APEXII CCD diffractometer 2692 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.036
φ and ω scans θmax = 31.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −15→14
Tmin = 0.586, Tmax = 0.746 k = −11→11
11240 measured reflections l = −19→18
3410 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: mixed
wR(F2) = 0.093 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.9998P] where P = (Fo2 + 2Fc2)/3
3410 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 2.31 e Å3
6 restraints Δρmin = −1.67 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ba1 −0.00361 (2) 0.20711 (3) 0.69482 (2) 0.01991 (8)
O1 0.2105 (3) −0.4097 (4) 0.6917 (3) 0.0343 (8)
O2 0.1678 (3) −0.0830 (4) 0.6825 (3) 0.0295 (7)
O3 0.6026 (3) −0.0297 (4) 0.6022 (3) 0.0344 (8)
O4 0.6113 (4) −0.3626 (5) 0.5935 (4) 0.0489 (10)
O5 0.2660 (4) 0.2124 (5) 0.6490 (5) 0.0711 (16)
O6 0.4673 (4) 0.2379 (4) 0.6424 (4) 0.0446 (10)
O7 −0.0517 (3) 0.5240 (4) 0.6225 (2) 0.0259 (6)
O8 −0.0324 (4) 0.7141 (4) 0.5006 (3) 0.0380 (9)
O9 −0.1222 (3) −0.0942 (4) 0.6412 (2) 0.0277 (7)
H2 −0.2018 −0.1018 0.6364 0.033*
H3 −0.1064 −0.1457 0.5898 0.033*
O10 −0.2582 (4) 0.2730 (5) 0.5886 (4) 0.0452 (10)
H4 −0.3231 0.2206 0.6007 0.054*
H5 −0.2776 0.3726 0.5862 0.054*
N1 0.4071 (3) −0.3879 (4) 0.6348 (3) 0.0236 (7)
H1 0.4119 −0.4950 0.6295 0.028*
N2 0.3712 (4) 0.1478 (5) 0.6435 (3) 0.0258 (7)
C1 0.2940 (4) −0.3217 (5) 0.6640 (3) 0.0211 (8)
C2 0.2754 (4) −0.1295 (5) 0.6620 (3) 0.0196 (7)
C3 0.3832 (4) −0.0309 (5) 0.6406 (3) 0.0201 (7)
C4 0.5038 (4) −0.1026 (5) 0.6192 (3) 0.0217 (8)
C5 0.5130 (4) −0.2959 (6) 0.6135 (4) 0.0250 (8)
C6 −0.0251 (4) 0.5680 (5) 0.5350 (3) 0.0218 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ba1 0.02335 (13) 0.01750 (12) 0.01979 (12) 0.00255 (10) 0.00648 (8) 0.00287 (9)
O1 0.0313 (17) 0.0196 (16) 0.056 (2) −0.0044 (13) 0.0208 (15) 0.0017 (14)
O2 0.0223 (15) 0.0213 (16) 0.048 (2) 0.0046 (12) 0.0156 (13) 0.0036 (13)
O3 0.0191 (15) 0.0244 (17) 0.061 (2) −0.0021 (13) 0.0110 (14) 0.0034 (15)
O4 0.0296 (18) 0.0305 (19) 0.091 (3) 0.0069 (16) 0.0260 (19) 0.000 (2)
O5 0.037 (2) 0.026 (2) 0.157 (5) 0.0086 (17) 0.038 (3) 0.007 (2)
O6 0.0302 (18) 0.0179 (17) 0.087 (3) −0.0070 (14) 0.0102 (19) 0.0005 (18)
O7 0.0408 (18) 0.0192 (14) 0.0193 (14) 0.0009 (13) 0.0101 (13) −0.0011 (11)
O8 0.068 (3) 0.0215 (16) 0.0281 (17) 0.0077 (17) 0.0221 (17) 0.0028 (13)
O9 0.0241 (15) 0.0280 (16) 0.0318 (16) 0.0028 (13) 0.0063 (12) −0.0083 (13)
O10 0.0294 (18) 0.032 (2) 0.072 (3) −0.0050 (16) −0.0021 (18) 0.0092 (18)
N1 0.0228 (17) 0.0139 (15) 0.035 (2) 0.0023 (13) 0.0096 (14) 0.0000 (14)
N2 0.0228 (17) 0.0192 (17) 0.036 (2) 0.0005 (14) 0.0066 (15) 0.0007 (15)
C1 0.0216 (19) 0.0184 (19) 0.0245 (19) 0.0014 (14) 0.0075 (15) 0.0000 (14)
C2 0.0198 (18) 0.0168 (18) 0.0227 (18) 0.0023 (15) 0.0049 (14) 0.0005 (15)
C3 0.0187 (18) 0.0146 (17) 0.027 (2) −0.0003 (14) 0.0032 (15) 0.0012 (14)
C4 0.0191 (18) 0.0180 (18) 0.028 (2) −0.0019 (15) 0.0043 (15) 0.0003 (15)
C5 0.0211 (19) 0.024 (2) 0.031 (2) 0.0023 (17) 0.0056 (16) 0.0027 (17)
C6 0.027 (2) 0.0183 (19) 0.0211 (19) 0.0020 (15) 0.0073 (15) −0.0044 (14)

Geometric parameters (Å, º)

Ba1—O8i 2.698 (3) O7—C6 1.257 (5)
Ba1—O7 2.728 (3) O7—Ba1iii 2.805 (3)
Ba1—O9 2.755 (3) O8—C6 1.250 (5)
Ba1—O7ii 2.805 (3) O8—Ba1i 2.698 (3)
Ba1—O9iii 2.860 (3) O9—Ba1ii 2.860 (3)
Ba1—O10 2.882 (4) O9—H2 0.8200
Ba1—O1iii 2.889 (3) O9—H3 0.8200
Ba1—O5 2.914 (4) O10—H4 0.8201
Ba1—O2 2.931 (3) O10—H5 0.8200
Ba1—O2iii 2.978 (3) N1—C5 1.372 (5)
O1—C1 1.199 (5) N1—C1 1.375 (5)
O1—Ba1ii 2.889 (3) N1—H1 0.8600
O2—C2 1.229 (5) N2—C3 1.433 (5)
O2—Ba1ii 2.978 (3) C1—C2 1.547 (6)
O3—C4 1.217 (5) C2—C3 1.417 (5)
O4—C5 1.202 (5) C3—C4 1.427 (5)
O5—N2 1.212 (5) C4—C5 1.549 (6)
O6—N2 1.227 (5) C6—C6i 1.546 (8)
O8i—Ba1—O7 59.61 (9) O2—Ba1—O2iii 149.14 (6)
O8i—Ba1—O9 93.86 (10) C1—O1—Ba1ii 124.3 (3)
O7—Ba1—O9 131.58 (10) C2—O2—Ba1 144.8 (3)
O8i—Ba1—O7ii 153.12 (10) C2—O2—Ba1ii 122.0 (3)
O7—Ba1—O7ii 142.27 (8) Ba1—O2—Ba1ii 91.81 (8)
O9—Ba1—O7ii 78.67 (9) N2—O5—Ba1 152.8 (3)
O8i—Ba1—O9iii 118.77 (10) C6—O7—Ba1 121.7 (3)
O7—Ba1—O9iii 78.16 (9) C6—O7—Ba1iii 125.8 (3)
O9—Ba1—O9iii 145.81 (7) Ba1—O7—Ba1iii 100.18 (9)
O7ii—Ba1—O9iii 67.59 (9) C6—O8—Ba1i 123.3 (3)
O8i—Ba1—O10 73.50 (13) Ba1—O9—Ba1ii 98.17 (9)
O7—Ba1—O10 62.78 (10) Ba1—O9—H2 119.8
O9—Ba1—O10 71.41 (10) Ba1ii—O9—H2 112.6
O7ii—Ba1—O10 126.42 (11) Ba1—O9—H3 121.6
O9iii—Ba1—O10 125.00 (11) Ba1ii—O9—H3 102.8
O8i—Ba1—O1iii 138.61 (12) H2—O9—H3 100.9
O7—Ba1—O1iii 111.17 (9) Ba1—O10—H4 122.3
O9—Ba1—O1iii 61.02 (9) Ba1—O10—H5 113.6
O7ii—Ba1—O1iii 59.07 (10) H4—O10—H5 107.6
O9iii—Ba1—O1iii 95.40 (9) C5—N1—C1 124.8 (4)
O10—Ba1—O1iii 67.61 (11) C5—N1—H1 117.6
O8i—Ba1—O5 64.24 (16) C1—N1—H1 117.6
O7—Ba1—O5 93.23 (11) O5—N2—O6 118.8 (4)
O9—Ba1—O5 111.61 (11) O5—N2—C3 120.4 (4)
O7ii—Ba1—O5 94.27 (14) O6—N2—C3 120.8 (4)
O9iii—Ba1—O5 77.39 (14) O1—C1—N1 121.4 (4)
O10—Ba1—O5 137.72 (16) O1—C1—C2 119.6 (4)
O1iii—Ba1—O5 152.77 (13) N1—C1—C2 119.0 (3)
O8i—Ba1—O2 89.10 (10) O2—C2—C3 128.6 (4)
O7—Ba1—O2 143.31 (9) O2—C2—C1 114.2 (4)
O9—Ba1—O2 63.24 (9) C3—C2—C1 117.1 (3)
O7ii—Ba1—O2 64.40 (9) C2—C3—C4 122.6 (4)
O9iii—Ba1—O2 104.67 (9) C2—C3—N2 118.4 (4)
O10—Ba1—O2 129.95 (11) C4—C3—N2 119.0 (3)
O1iii—Ba1—O2 105.01 (9) O3—C4—C3 127.7 (4)
O5—Ba1—O2 53.35 (10) O3—C4—C5 114.3 (4)
O8i—Ba1—O2iii 121.74 (10) C3—C4—C5 117.9 (3)
O7—Ba1—O2iii 64.65 (9) O4—C5—N1 121.2 (4)
O9—Ba1—O2iii 111.41 (8) O4—C5—C4 120.7 (4)
O7ii—Ba1—O2iii 84.77 (9) N1—C5—C4 118.0 (3)
O9iii—Ba1—O2iii 61.45 (9) O8—C6—O7 125.3 (4)
O10—Ba1—O2iii 67.23 (11) O8—C6—C6i 117.0 (5)
O1iii—Ba1—O2iii 53.60 (8) O7—C6—C6i 117.7 (5)
O5—Ba1—O2iii 135.85 (12)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y−1/2, −z+3/2; (iii) −x, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O6iv 0.86 2.21 3.052 (5) 166
O9—H2···O3v 0.82 2.10 2.877 (4) 158
O9—H3···O8iv 0.82 1.84 2.639 (4) 163
O10—H4···O3v 0.82 2.14 2.828 (5) 141
O10—H4···O6v 0.82 2.30 3.010 (5) 146
O10—H5···O4vi 0.82 2.41 3.210 (5) 165

Symmetry codes: (iv) x, y−1, z; (v) x−1, y, z; (vi) x−1, y+1, z.

References

  1. Aldoshin, S. M. (2008). Russ. Chem. Bull. 57, 718–735.
  2. Belombe, M. M., Nenwa, J., Mbiangue, Y.-A., Nnanga, G. E., Mbomekalle, I.-M., Hey-Hawkins, E., Lonnecke, P. & Majoumo, F. (2003). Dalton Trans. pp. 2117–2118.
  3. Belombe, M. M., Nenwa, J., Tchuisse, N. A. S. N., Emmerling, F., Obbade, S., Semmoud, A. & Fokwa, B. P. T. (2012). ScienceJet, 1, 24–27.
  4. Bouayad, A., Trombe, J.-C. & Gleizes, A. (1995). Inorg. Chim. Acta, 230, 1–7.
  5. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chantrapromma, S., Usman, A. & Fun, H.-K. (2002). Acta Cryst. C58, m531–m533. [DOI] [PubMed]
  7. Coronado, E., Curreli, S., Giminez-Saiz, C., Gimez-Garcia, C. J., Deplano, P., Mercuri, M. L., Serpe, A., Pilia, L., Faulmann, C. & Canadell, E. (2007). Inorg. Chem. 46, 4446–4457. [DOI] [PubMed]
  8. Dinh Do, N., Kovalchukova, O., Stash, A. & Strashnova, S. (2013). Acta Cryst. E69, m477–m478. [DOI] [PMC free article] [PubMed]
  9. Harrowfield, J. M. R. P., Sharma, R. P., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 785–794.
  10. Heinl, U., Kleinitz, U. & Mattes, R. (2002). Z. Anorg. Allg. Chem. 628, 2409–2414.
  11. Iveson, S. J., Johnston, C. B. & Harrison, W. T. A. (2011). Crystals, 1, 59–68.
  12. Johnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  13. Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11–34.
  14. Kovalchukova, O. V., Dinh Do, N., Stash, A. I., Strashnova, S. B. & Zaitsev, B. E. (2014). Crystallogr. Rep. 59, 60–65.
  15. Kovalchukova, O. & Strashnova, S. (2014). Rev. Inorg. Chem. 34, 1–24.
  16. Larsson, K. (2001). Acta Cryst. E57, m195–m197.
  17. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  18. Marinescu, G., Andruh, M., Julve, M., Lloret, F., Llusar, R., Uriel, S. & Vaissermann, J. (2005). Cryst. Growth Des. 5, 261–267.
  19. Ohba, M. & Okawa, H. (2000). Coord. Chem. Rev. 198, 313–328.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Venkatasubramanian, K., Poonia, N. S., Clinger, K., Ernst, S. R. & Hackert, M. L. (1984). J. Inclus. Phenom. Mol. 1, 319–327.
  23. Viciano-Chumillas, M., Marino, N., Sorribes, I., Vicent, C., Lloret, F. & Julve, M. (2010). CrystEngComm, 12, 122–133.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015006520/cv5485sup1.cif

e-71-00459-sup1.cif (350.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015006520/cv5485Isup2.hkl

e-71-00459-Isup2.hkl (187.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015006520/cv5485Isup3.mol

CCDC reference: 1057170

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES