Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 30;71(Pt 5):o366–o367. doi: 10.1107/S2056989015008154

Crystal structure of ethyl 2-amino-4-(4-meth­oxy­phen­yl)-4H-1-benzothieno[3,2-b]pyran-3-carboxyl­ate

Mohamed Bakhouch a,*, Abdelali Kerbal a, Mohamed El Yazidi a, Mohamed Saadi b, Lahcen El Ammari b
PMCID: PMC4420120  PMID: 25995952

Abstract

The mol­ecule of the title compound, C21H19NO4S, features a fused ring system whereby a five-membered ring is flanked by two six-membered rings. This is linked to an ethyl 3-carboxyl­ate group and to a meth­oxy­benzene group. The fused-ring system is quasi-planar, with the greatest deviation from the mean plane being 0.131 (1) Å for the methine C atom. The plane through the meth­oxy­benzene ring is nearly perpendicular to that through the fused-ring system, as indicated by the dihedral angle of 85.72 (6)°. An intra­molecular N—H⋯O hydrogen bond is noted. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming layers that stack along the a axis.

Keywords: crystal structure, thio­aurones, hydrogen bonding

Related literature  

For biological properties of substituted 2-amino-4-aryl-4H-pyran derivatives, see: Panda et al. (1997); Mungra et al. (2011). For the reactivity of (Z)-2-aryl­idenebenzo[b]thio­phen-3(2H)-ones (thio­aurones), see: Boughaleb et al. (2010; 2011); Bakhouch et al. (2014, 2015). For the preparation of the title compound, using condensation reactions, see: Daisley et al. (1982).graphic file with name e-71-0o366-scheme1.jpg

Experimental  

Crystal data  

  • C21H19NO4S

  • M r = 381.43

  • Monoclinic, Inline graphic

  • a = 11.8355 (7) Å

  • b = 18.6222 (11) Å

  • c = 9.0110 (5) Å

  • β = 106.502 (2)°

  • V = 1904.25 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.42 × 0.31 × 0.26 mm

Data collection  

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995) T min = 0.673, T max = 0.746

  • 38870 measured reflections

  • 5347 independent reflections

  • 4118 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.130

  • S = 1.06

  • 5347 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015008154/tk5366sup1.cif

e-71-0o366-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008154/tk5366Isup2.hkl

e-71-0o366-Isup2.hkl (261.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008154/tk5366Isup3.cml

. DOI: 10.1107/S2056989015008154/tk5366fig1.tif

Plot of the mol­ecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

CCDC reference: 1061576

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2BO2 0.86 2.08 2.6903(16) 128
N2H2AO2i 0.86 2.17 2.9964(16) 161
N2H2BO4ii 0.86 2.38 3.0908(17) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray intensity measurements.

supplementary crystallographic information

S1. Comment

Substituted 2-amino-4-aryl-4H-pyran derivatives are an important class of heterocyclic compounds, which frequently exhibit a wide range of biological properties viz. antiproliferative, antitubercular activities (Panda et al., 1997; Mungra et al., 2011). Thus, in view of the large spectrum of applications of these compounds and in continuation of ongoing research focused on the reactivity of the (Z)-2-arylidenebenzo[b]thiophen- 3(2H)-ones (thioaurones) (Boughaleb et al., 2010; 2011; Bakhouch et al., 2014; 2015), the title compound was investigated This was prepared by the the action of ethyl cyanoacetate on (Z)-2-(4- methoxybenzylidene)benzo[b]thiophen-3(2H)-one (Daisley et al., 1982). The subsequent tautomeric transformation gives rise to ethyl 2-amino-4-(4-methoxyphenyl)-4H-1-benzothieno[3,2-b]pyran-3- carboxylate.

The molecule of the title compound is formed by three fused rings linked to an ethyl-3-carboxylate group and to a methoxybenzene group as shown in Fig. 1. The three fused rings (S1C1 to C11 O1) are nearly coplanar, with the maximum deviation from the mean plane being -0.131 (1) Å at C10, and makes a dihedral angle of 85.72 (6)° with the plans through this attached methoxyphenyl group.

In the crystal, the molecules are linked by N—H···O hydrogen bonds as shown in Fig. 2 and Table 1.

S2. Experimental

In a 100 ml flask equipped with a condenser was dissolved 4 mmol of (Z)-2-(4-methoxybenzylidene)-1-benzo[b]thiophen-3(2H)-one and 5 mmol of ethyl cyanoacetate in 30 ml of ethanol. Then, 1 ml of piperidine was added, and the reaction mixture was refluxed for 6 h. Thin layer chromatography revealed the formation of a single product. The organic phase was evaporated under reduced pressure. The resulting residue was recrystallized from ethanol by slow evaporation (Yield: 28%; m.pt: 395 K).

S3. Refinement

H atoms were located in a difference map and treated as riding with C—H = 0.93–0.98 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2–1.5 Ueq(C) and Uiso(H) = 1.2 Ueq(N). Two reflections, i.e. (1 0 0) and (1 1 0), were omitted from the final refinement owing to poor agreement.

Figures

Fig. 1.

Fig. 1.

Plot of the molecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Crystal data

C21H19NO4S F(000) = 800
Mr = 381.43 Dx = 1.330 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5347 reflections
a = 11.8355 (7) Å θ = 2.2–29.6°
b = 18.6222 (11) Å µ = 0.20 mm1
c = 9.0110 (5) Å T = 296 K
β = 106.502 (2)° Block, colourless
V = 1904.25 (19) Å3 0.42 × 0.31 × 0.26 mm
Z = 4

Data collection

Bruker X8 APEX diffractometer 5347 independent reflections
Radiation source: fine-focus sealed tube 4118 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 29.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1995) h = −16→16
Tmin = 0.673, Tmax = 0.746 k = −25→25
38870 measured reflections l = −8→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.5166P] where P = (Fo2 + 2Fc2)/3
5347 reflections (Δ/σ)max = 0.001
244 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.54915 (13) 0.61283 (8) 0.9681 (2) 0.0525 (4)
C2 0.46963 (16) 0.61032 (10) 1.0560 (3) 0.0699 (5)
H2 0.4006 0.5837 1.0231 0.084*
C3 0.4953 (2) 0.64792 (11) 1.1919 (3) 0.0816 (6)
H3 0.4434 0.6463 1.2522 0.098*
C4 0.5973 (2) 0.68840 (11) 1.2411 (3) 0.0830 (7)
H4 0.6126 0.7137 1.3337 0.100*
C5 0.67644 (18) 0.69176 (9) 1.1550 (2) 0.0666 (5)
H5 0.7445 0.7193 1.1885 0.080*
C6 0.65300 (13) 0.65344 (7) 1.01733 (18) 0.0460 (3)
C7 0.72073 (12) 0.64514 (7) 0.90952 (16) 0.0412 (3)
C8 0.88161 (12) 0.67389 (7) 0.81926 (15) 0.0394 (3)
C9 0.84330 (12) 0.62861 (7) 0.69542 (15) 0.0405 (3)
C10 0.73518 (13) 0.58116 (7) 0.67067 (16) 0.0434 (3)
H10 0.6822 0.5911 0.5675 0.052*
C11 0.67418 (12) 0.60232 (7) 0.78831 (17) 0.0436 (3)
C12 0.76078 (13) 0.50065 (7) 0.68312 (15) 0.0416 (3)
C13 0.83473 (14) 0.47133 (8) 0.81661 (16) 0.0484 (3)
H13 0.8741 0.5016 0.8968 0.058*
C14 0.85118 (15) 0.39799 (8) 0.83308 (19) 0.0537 (4)
H14 0.9009 0.3792 0.9239 0.064*
C15 0.79345 (14) 0.35251 (8) 0.7142 (2) 0.0517 (4)
C16 0.72156 (16) 0.38052 (9) 0.5795 (2) 0.0587 (4)
H16 0.6839 0.3503 0.4983 0.070*
C17 0.70549 (15) 0.45444 (9) 0.56549 (18) 0.0547 (4)
H17 0.6561 0.4732 0.4743 0.066*
C18 0.7396 (2) 0.23146 (10) 0.6393 (4) 0.0980 (8)
H18A 0.7623 0.1832 0.6719 0.147*
H18B 0.7473 0.2389 0.5372 0.147*
H18C 0.6592 0.2392 0.6384 0.147*
C19 0.90696 (14) 0.62770 (7) 0.58012 (16) 0.0462 (3)
C20 0.9195 (2) 0.56999 (10) 0.3491 (2) 0.0703 (5)
H20A 1.0017 0.5579 0.3960 0.084*
H20B 0.9156 0.6133 0.2881 0.084*
C21 0.8570 (3) 0.50952 (12) 0.2497 (2) 0.0897 (7)
H21A 0.8935 0.5004 0.1691 0.135*
H21B 0.7758 0.5223 0.2045 0.135*
H21C 0.8614 0.4672 0.3118 0.135*
N2 0.97404 (11) 0.71791 (7) 0.84860 (15) 0.0496 (3)
H2A 0.9907 0.7445 0.9300 0.060*
H2B 1.0171 0.7197 0.7862 0.060*
O1 0.82701 (9) 0.68022 (6) 0.93374 (12) 0.0483 (2)
O2 0.99346 (11) 0.66385 (6) 0.58006 (13) 0.0556 (3)
O3 0.85945 (12) 0.58024 (6) 0.46707 (12) 0.0600 (3)
O4 0.81361 (12) 0.28053 (6) 0.74361 (18) 0.0727 (4)
S1 0.53964 (4) 0.56789 (3) 0.79591 (6) 0.06281 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0427 (7) 0.0455 (7) 0.0715 (10) 0.0012 (6) 0.0199 (7) 0.0062 (7)
C2 0.0508 (9) 0.0631 (10) 0.1059 (15) −0.0028 (8) 0.0388 (10) 0.0102 (10)
C3 0.0858 (14) 0.0717 (12) 0.1146 (18) −0.0017 (10) 0.0725 (14) 0.0004 (12)
C4 0.1067 (16) 0.0694 (12) 0.1008 (16) −0.0151 (11) 0.0746 (14) −0.0204 (11)
C5 0.0791 (12) 0.0565 (9) 0.0813 (12) −0.0179 (8) 0.0506 (10) −0.0193 (9)
C6 0.0471 (7) 0.0364 (6) 0.0608 (9) −0.0011 (5) 0.0253 (6) 0.0012 (6)
C7 0.0417 (6) 0.0352 (6) 0.0491 (7) −0.0029 (5) 0.0169 (6) −0.0019 (5)
C8 0.0445 (6) 0.0358 (6) 0.0414 (7) 0.0006 (5) 0.0181 (5) 0.0004 (5)
C9 0.0516 (7) 0.0336 (6) 0.0379 (7) 0.0003 (5) 0.0150 (6) 0.0020 (5)
C10 0.0501 (7) 0.0408 (6) 0.0350 (6) −0.0021 (5) 0.0053 (5) −0.0008 (5)
C11 0.0412 (6) 0.0392 (6) 0.0483 (8) −0.0011 (5) 0.0093 (6) 0.0010 (5)
C12 0.0507 (7) 0.0392 (6) 0.0347 (6) −0.0062 (5) 0.0120 (5) −0.0052 (5)
C13 0.0635 (9) 0.0413 (7) 0.0368 (7) −0.0032 (6) 0.0086 (6) −0.0061 (5)
C14 0.0648 (9) 0.0446 (8) 0.0515 (9) 0.0040 (7) 0.0162 (7) 0.0033 (6)
C15 0.0564 (8) 0.0375 (7) 0.0727 (10) −0.0054 (6) 0.0370 (8) −0.0095 (6)
C16 0.0681 (10) 0.0511 (8) 0.0597 (10) −0.0175 (7) 0.0230 (8) −0.0239 (7)
C17 0.0639 (9) 0.0534 (8) 0.0417 (8) −0.0105 (7) 0.0068 (7) −0.0106 (6)
C18 0.0876 (14) 0.0439 (9) 0.175 (3) −0.0152 (9) 0.0570 (16) −0.0330 (13)
C19 0.0666 (9) 0.0370 (6) 0.0378 (7) 0.0055 (6) 0.0192 (6) 0.0035 (5)
C20 0.1086 (16) 0.0698 (11) 0.0429 (9) 0.0043 (10) 0.0384 (10) −0.0031 (7)
C21 0.146 (2) 0.0812 (14) 0.0477 (10) −0.0027 (14) 0.0360 (12) −0.0168 (9)
N2 0.0545 (7) 0.0493 (6) 0.0527 (7) −0.0134 (5) 0.0276 (6) −0.0125 (5)
O1 0.0499 (5) 0.0532 (6) 0.0486 (6) −0.0163 (4) 0.0248 (4) −0.0154 (4)
O2 0.0742 (7) 0.0480 (6) 0.0545 (6) −0.0039 (5) 0.0345 (6) 0.0020 (5)
O3 0.0858 (8) 0.0595 (6) 0.0406 (6) −0.0071 (6) 0.0277 (6) −0.0085 (5)
O4 0.0800 (8) 0.0368 (5) 0.1128 (11) −0.0022 (5) 0.0458 (8) −0.0092 (6)
S1 0.0452 (2) 0.0688 (3) 0.0704 (3) −0.01563 (18) 0.00995 (19) −0.0072 (2)

Geometric parameters (Å, º)

C1—C2 1.393 (2) C13—C14 1.382 (2)
C1—C6 1.404 (2) C13—H13 0.9300
C1—S1 1.7381 (18) C14—C15 1.384 (2)
C2—C3 1.367 (3) C14—H14 0.9300
C2—H2 0.9300 C15—C16 1.372 (3)
C3—C4 1.385 (3) C15—O4 1.3742 (18)
C3—H3 0.9300 C16—C17 1.390 (2)
C4—C5 1.377 (2) C16—H16 0.9300
C4—H4 0.9300 C17—H17 0.9300
C5—C6 1.389 (2) C18—O4 1.420 (3)
C5—H5 0.9300 C18—H18A 0.9600
C6—C7 1.4327 (19) C18—H18B 0.9600
C7—C11 1.3381 (19) C18—H18C 0.9600
C7—O1 1.3786 (16) C19—O2 1.2255 (19)
C8—N2 1.3319 (17) C19—O3 1.3451 (18)
C8—O1 1.3691 (15) C20—O3 1.450 (2)
C8—C9 1.3691 (18) C20—C21 1.497 (3)
C9—C19 1.4464 (19) C20—H20A 0.9700
C9—C10 1.5185 (19) C20—H20B 0.9700
C10—C11 1.495 (2) C21—H21A 0.9600
C10—C12 1.5273 (19) C21—H21B 0.9600
C10—H10 0.9800 C21—H21C 0.9600
C11—S1 1.7360 (14) N2—H2A 0.8600
C12—C17 1.3778 (19) N2—H2B 0.8600
C12—C13 1.383 (2)
C2—C1—C6 120.72 (17) C12—C13—H13 119.4
C2—C1—S1 127.51 (14) C13—C14—C15 119.88 (15)
C6—C1—S1 111.75 (12) C13—C14—H14 120.1
C3—C2—C1 118.55 (17) C15—C14—H14 120.1
C3—C2—H2 120.7 C16—C15—O4 124.87 (15)
C1—C2—H2 120.7 C16—C15—C14 119.85 (14)
C2—C3—C4 121.17 (17) O4—C15—C14 115.28 (16)
C2—C3—H3 119.4 C15—C16—C17 119.43 (14)
C4—C3—H3 119.4 C15—C16—H16 120.3
C5—C4—C3 120.97 (19) C17—C16—H16 120.3
C5—C4—H4 119.5 C12—C17—C16 121.70 (15)
C3—C4—H4 119.5 C12—C17—H17 119.1
C4—C5—C6 118.99 (18) C16—C17—H17 119.1
C4—C5—H5 120.5 O4—C18—H18A 109.5
C6—C5—H5 120.5 O4—C18—H18B 109.5
C5—C6—C1 119.60 (14) H18A—C18—H18B 109.5
C5—C6—C7 130.75 (14) O4—C18—H18C 109.5
C1—C6—C7 109.63 (13) H18A—C18—H18C 109.5
C11—C7—O1 123.86 (12) H18B—C18—H18C 109.5
C11—C7—C6 115.96 (13) O2—C19—O3 122.02 (13)
O1—C7—C6 120.17 (12) O2—C19—C9 126.84 (13)
N2—C8—O1 109.53 (11) O3—C19—C9 111.15 (13)
N2—C8—C9 127.16 (12) O3—C20—C21 105.98 (17)
O1—C8—C9 123.31 (12) O3—C20—H20A 110.5
C8—C9—C19 118.24 (12) C21—C20—H20A 110.5
C8—C9—C10 123.25 (12) O3—C20—H20B 110.5
C19—C9—C10 118.48 (12) C21—C20—H20B 110.5
C11—C10—C9 107.39 (11) H20A—C20—H20B 108.7
C11—C10—C12 109.41 (11) C20—C21—H21A 109.5
C9—C10—C12 114.78 (12) C20—C21—H21B 109.5
C11—C10—H10 108.4 H21A—C21—H21B 109.5
C9—C10—H10 108.4 C20—C21—H21C 109.5
C12—C10—H10 108.4 H21A—C21—H21C 109.5
C7—C11—C10 124.48 (13) H21B—C21—H21C 109.5
C7—C11—S1 110.95 (11) C8—N2—H2A 120.0
C10—C11—S1 124.31 (10) C8—N2—H2B 120.0
C17—C12—C13 117.87 (13) H2A—N2—H2B 120.0
C17—C12—C10 121.04 (13) C8—O1—C7 116.40 (10)
C13—C12—C10 120.98 (12) C19—O3—C20 117.08 (14)
C14—C13—C12 121.25 (13) C15—O4—C18 117.34 (17)
C14—C13—H13 119.4 C11—S1—C1 91.71 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O2 0.86 2.08 2.6903 (16) 128
N2—H2A···O2i 0.86 2.17 2.9964 (16) 161
N2—H2B···O4ii 0.86 2.38 3.0908 (17) 140

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+2, y+1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5366).

References

  1. Bakhouch, M., Al Houari, G., Daoudi, M., Kerbal, A. & El Yazidi, M. (2015). Med. J. Chem 4, 9–17.
  2. Bakhouch, M., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o587. [DOI] [PMC free article] [PubMed]
  3. Boughaleb, A., Akhazzane, M., Alhouari, G., Bennani, B., Daoudi, M., Garrigues, B., Kerbal, A. & El yazidi, M. (2011). J. Soc. Chim. Tunisie, 13, 117–122.
  4. Boughaleb, A., Al houari, G., Bennani, B., Daoudi, M., Garrigues, B., Kerbal, A. & El yazidi, M. (2010). J. Soc. Chim. Tunisie, 12, 109–115.
  5. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Daisley, R. W., Elagbar, Z. A. & Walker, J. (1982). J. Heterocycl. Chem. 19, 1013–1016.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Mungra, D. C., Patel, M. P., Rajani, D. P. & Patel, R. G. (2011). Eur. J. Med. Chem. 46, 4192–4200. [DOI] [PubMed]
  9. Panda, D., Singh, J. P. & Wilson, L. (1997). J. Biol. Chem. 272, 7681–7687. [DOI] [PubMed]
  10. Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015008154/tk5366sup1.cif

e-71-0o366-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008154/tk5366Isup2.hkl

e-71-0o366-Isup2.hkl (261.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008154/tk5366Isup3.cml

. DOI: 10.1107/S2056989015008154/tk5366fig1.tif

Plot of the mol­ecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

CCDC reference: 1061576

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES