Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 18;71(Pt 5):490–493. doi: 10.1107/S2056989015007136

Crystal structure of (±)-(1SR,5SR,6SR,7SR,10SR,11SR,13SR)-13-benz­yloxy-7-meth­oxy­meth­oxy-11,15,18,18-tetra­methyl-3-oxo-2,4-dioxa­tetra­cyclo­[12.3.1.01,5.06,11]octa­deca-14,16-dien-10-yl benzoate

Takeshi Oishi a,*, Keisuke Fukaya b, Yu Yamaguchi b, Tomoya Sugai b, Ami Watanabe b, Takaaki Sato b, Noritaka Chida b
PMCID: PMC4420122  PMID: 25995863

In the title compound, the ring conformations of the tetra­cycle are twist, chair, half-chair and chair–boat forms. In the crystal, inter­molecular C—H⋯O and C—H⋯π inter­actions link mol­ecules to construct a three-dimensional architecture.

Keywords: crystal structure, hydrogen bonds, taxane skeleton, paclitaxel, hydrogen bonding, C—H⋯π inter­actions

Abstract

In the title compound, C36H42O8, the dioxolane ring adopts a twist conformation; the two adjacent C atoms deviate alternately from the mean plane of other atoms by −0.287 (5) and 0.174 (5) Å. The cyclo­hexane, cyclo­hexa­diene and central cyclo­octane rings show chair, half-chair and boat–chair forms, respectively. As a result of the strained ring system, the tetra­subsituted olefin in the cyclo­hexa­diene is skewed from an ideal planar structure. In the crystal, C—H⋯O hydrogen bonds connect the mol­ecules into a sheet parallel to (100). The sheets are further linked by other weak C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network.

Chemical context  

Paclitaxel is a well-known natural diterpenoid containing a taxane framework (tri­cyclo­[9.3.1.03,8]penta­decane; Fig. 1), with a potent anti­tumor activity (Wall & Wani, 1995). The complicated structure and significant bioactivity have attracted chemical and medicinal inter­est. Previously, we have reported the crystal structures of the precursor for cyclization to build the taxane skeleton (Oishi, Yamaguchi et al., 2015), and cyclized compounds (Oishi, Fukaya et al., 2015) obtained in the synthetic study of paclitaxel. The title compound was afforded by further manipulation of functional groups of the cyclized compounds (Fukaya et al., 2015).graphic file with name e-71-00490-scheme1.jpg

Figure 1.

Figure 1

Left: Structure of the tri­cyclo­[9.3.1.03,8]penta­decane (taxane) skeleton; Right: The title compound, indicating the taxane skeleton with red lines. R 1 = OC(=O)Ph, R 2 = OCH2OCH3, R 3 = OCH2Ph.

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 2. The dioxolane ring (C1/C2/O20/C21/O22) adopts a twist form with puckering parameters of Q(2) = 0.272 (2) Å and ϕ(2) = 58.3 (5)°. Atoms C1 and C2 deviate from the mean plane of the other atoms by −0.287 (5) and 0.174 (5) Å, respectively. The cyclo­hexane ring (C3–C8) adopts a chair form with puckering parameters of Q = 0.590 (2) Å, θ = 10.97 (19)°, ϕ = 294.8 (12)°, Q(2) = 0.110 (2) Å and Q(3) = 0.579 (2) Å. The large substituents (C3—C2, C7—O24 and C8—C9) are in equatorial positions, while the meth­oxy­meth­oxy group (C4–O41) is slightly tilted from the ideal equatorial position with an angle to the Cremer & Pople plane of 59.01 (14)°.

Figure 2.

Figure 2

The mol­ecular structure of the title compound with the atom labeling. Displacement ellipsoids are drawn at the 30% probability level. The purple dotted line indicates the intra­molecular short contact. For clarity, only the H atoms attached to the chiral C atoms and related to the short contact are shown.

The cyclo­hexa­diene ring (C1/C14/C13/C12/C11/C15) adopts a half-boat form with puckering parameters of Q = 0.598 (2) Å, θ = 115.68 (19)°, ϕ = 131.4 (3)°, Q(2) = 0.539 (2)° and Q(3) = 0.259 (2)°. The tetra­substituted olefin (C10/C15/C11=C12/C13/C18) is skewed from an ideal planar structure as a result of the strain in the fused-ring system, the C10—C11=C12—C18, C15—C11=C12—C13, C10—C11=C12—C13 and C15—C11=C12—C18 torsion angles being −19.5 (3), −18.4 (3), 150.34 (18) and 171.80 (18)°, respectively. The dihedral angle between the C10/C11/C15 and C18/C12/C13 planes is 26.4 (3)°. The other olefin (C12/C13=C14/C1) slightly deviates from planarity with a C12—C13=C14—C1 torsion angle of 9.1 (3)°. The diene moiety shows a C11=C12—C13=C14 torsion angle of −17.7 (3)°. The central cyclo­octane ring (C1–C3/C8–C11/C15) adopts a boat-chair form with puckering parameters of Q = 1.182 (2) Å, Q(2) = 0.897 (2) Å, ϕ(2) = 179.75 (15)°, Q(3) = 0.627 (2) Å, ϕ(3) = 2.7 (2)° and Q(4) = 0.441 (2) Å. There is an intra­molecular short contact of 1.98 Å between atoms H2 and H9B (Fig. 2).

Supra­molecular features  

Inter­molecular C—H⋯O inter­actions (C34—H34A⋯O43i and C38—H38⋯O23ii; Table 1 and Fig. 3) lead to the formation of a sheet parallel to (100). These sheets are further linked through weak inter­molecular C—H⋯O and C—H⋯π inter­actions (C31—H31⋯O33iii, C2—H2⋯O23iv, C16—H16A⋯O23iv, C19—H19C⋯O23iv and C18—H18CCg v; Table 1, Figs. 4 and 5) into a three-dimensional network.

Table 1. Hydrogen-bond geometry (, ).

Cg is the centroid of the C35C40 benzene ring.

DHA DH HA D A DHA
C34H34AO43i 0.99 2.42 3.377(3) 163
C38H38O23ii 0.95 2.44 3.295(3) 149
C31H31O33iii 0.95 2.49 3.426(3) 168
C2H2O23iv 1.00 2.51 3.433(3) 153
C16H16AO23iv 0.98 2.53 3.357(3) 142
C19H19CO23iv 0.98 2.54 3.477(3) 160
C18H18C Cg v 0.98 2.89 3.492(3) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 3.

Figure 3

A partial packing view showing a sheet parallel to (100). Black dashed lines indicate the inter­molecular C—H⋯O inter­actions. Only H atoms involved in hydrogen bonds are shown for clarity. [Symmetry codes: (i) x, y + 1, z; (ii) x, y + 1, z − 1.]

Figure 4.

Figure 4

A packing diagram showing the connections between enanti­omers. Black dashed lines indicate the inter­molecular C—H⋯O inter­actions. Only H atoms involved in hydrogen bonds are shown for clarity. [Symmetry codes: (ii) x, y + 1, z − 1; (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 1, −y, −z + 2.]

Figure 5.

Figure 5

A packing diagram viewed down the c axis. Black dashed lines indicate the inter­molecular C—H⋯O and C—H⋯π inter­actions. Cg is the centroid of the C35–C40 benzene ring. Only H atoms involved in hydrogen bonds are shown for clarity. [Symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (v) −x, −y + 1, −z + 1.]

Database survey  

In the Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014), 85 structures containing a tri­cyclo­[9.3.1.03,8]penta­dec-11-ene skeleton, (a), are registered (Fig. 6). These include a large number of paclitaxels and its analogues, and one compound (NEGBOQ; Poujol et al., 1997) containing a 2,4-dioxa­tetra­cyclo­[12.3.1.01,5.06,11]octa­dec-14-ene skeleton, (e), which is a di­hydro derivative for the tetra­cyclic core of the title compound, (d). Another related structure (SOJWOD; Paquette & Zhao, 1998) containing a tri­cyclo­[9.3.1.03,8]penta­dec-13-ene skeleton, (b), has also been reported.

Figure 6.

Figure 6

Core structures for database survey; tri­cyclo­[9.3.1.03,8]penta­decane (taxane) and its (a) 11-ene and (b) 13-ene derivatives, (c) bi­cyclo­[5.3.1]undeca-7,9-diene, (d) the tetra­cyclic core of the title compound with ring labelling and (e) its di­hydro derivative and (f) the regioisomer of olefin. The ring-fusion geometries are similar to the title compound in each of the related structures, as cis-AB, trans-BC and trans-BD.

On the other hand, there are two related structures (GOQBET and GOQBIX; Keil et al., 1994) containing a bi­cyclo­[5.3.1]undeca-7,9-diene skeleton, (c). Additionally, related tetra­cyclic taxoid (ILIQUP; Ohba et al., 2003) and cyclic precursors for a taxane framework (NOTROF; Oishi, Yamaguchi et al., 2015) were obtained in our previous study. Furthermore, the structures of the three related tetra­cyclic compounds have been reported (Oishi, Fukaya et al., 2015). There are other crystalline compounds, closely related to the title compound with 2,4-dioxa­tetra­cyclo­[12.3.1.01,5.06,11]octa­deca-8,14-diene skeleton, (f) (Nicolaou, Ueno et al., 1995; Nicolaou, Yang et al., 1995), but they have not been deposited in the CSD.

Synthesis and crystallization  

The title compound was provided in a synthetic study on paclitaxel (Fukaya et al., 2015). The cyclo­hexa­diene unit (C1/C14/C13/C12/C11/C15) was synthesized according to the reported procedure (Nicolaou, Liu et al., 1995), and coupled with the substituted cyclo­hexane unit (C3–C8) prepared from 3-methyl­anisole by a Shapiro reaction (Nicolaou, Liu et al., 1995). A cyclization reaction followed by further manipulations of the functional groups afforded the title compound. Purification was carried out by silica gel chromatography, and colorless crystals were obtained from a benzene solution under a pentane-saturated atmosphere by slow evaporation at ambient temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with U iso(H) = 1.2U eq(C) or 1.5U eq(methyl C).

Table 2. Experimental details.

Crystal data
Chemical formula C36H42O8
M r 602.69
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 90
a, b, c () 10.9358(6), 11.6121(6), 13.6833(7)
, , () 72.148(2), 86.447(2), 66.766(2)
V (3) 1516.36(14)
Z 2
Radiation type Mo K
(mm1) 0.09
Crystal size (mm) 0.32 0.27 0.16
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.97, 0.98
No. of measured, independent and observed [I > 2(I)] reflections 27885, 5346, 4078
R int 0.052
(sin /)max (1) 0.595
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.047, 0.120, 1.04
No. of reflections 5346
No. of parameters 402
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.59, 0.23

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015007136/is5396sup1.cif

e-71-00490-sup1.cif (30.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007136/is5396Isup2.hkl

e-71-00490-Isup2.hkl (293.1KB, hkl)

CCDC reference: 1058739

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was partially supported by the Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research. We thank Professor T. Noda (Kanagawa Institute of Technology, Japan) for providing a mass spectrom­etry apparatus for our use. We also thank Professor S. Ohba (Keio University, Japan) for his valuable advice.

supplementary crystallographic information

Crystal data

C36H42O8 F(000) = 644
Mr = 602.69 Dx = 1.320 Mg m3
Triclinic, P1 Melting point: 465.2 K
a = 10.9358 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.6121 (6) Å Cell parameters from 9212 reflections
c = 13.6833 (7) Å θ = 2.2–25.0°
α = 72.148 (2)° µ = 0.09 mm1
β = 86.447 (2)° T = 90 K
γ = 66.766 (2)° Prism, colorless
V = 1516.36 (14) Å3 0.32 × 0.27 × 0.16 mm
Z = 2

Data collection

Bruker D8 Venture diffractometer 5346 independent reflections
Radiation source: fine-focus sealed tube 4078 reflections with I > 2σ(I)
Multilayered confocal mirror monochromator Rint = 0.052
Detector resolution: 8.333 pixels mm-1 θmax = 25.0°, θmin = 2.1°
φ and ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −13→13
Tmin = 0.97, Tmax = 0.98 l = −16→16
27885 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0504P)2 + 1.0416P] where P = (Fo2 + 2Fc2)/3
5346 reflections (Δ/σ)max = 0.001
402 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. M.p. 462.2–465.2 K (not corrected); IR (film): 2940, 1806, 1716, 1274, 1109, 1043, 713 cm-1; 1H NMR (500 MHz, CDCl3): δ (p.p.m.) 8.03 (dd, J = 8.3, 1.2 Hz, 2H), 7.61 (tt, J = 7.5, 1.2 Hz, 1H), 7.49 (ddd, J = 8.3, 7.5, 1.7 Hz, 2H), 7.23–7.12 (m, 5H), 6.17 (d, J = 9.2 Hz, 1H), 5.63 (d, J = 9.2 Hz, 1H), 4.94 (d, J = 4.9 Hz, 1H), 4.90 (dd, J = 11.3, 5.2 Hz, 1H), 4.75 (d, J = 6.9 Hz, 1H), 4.65 (dd, J = 11.7, 5.4 Hz, 1H), 4.50 (d, J = 6.9 Hz, 1H), 4.47 (d, J = 12.0 Hz, 1H), 4.24 (d, J = 12.0 Hz, 1H), 3.70 (ddd, J = 10.5, 10.5, 4.9 Hz, 1H), 3.33 (s, 3H), 2.26 (dddd, J = 13.4, 5.0, 4.9, 2.6 Hz, 1H), 2.12 (dd, J = 15.9, 5.4 Hz, 1H), 2.04 (dd, J = 10.5, 4.9 Hz, 1H), 1.99 (dd, J = 15.9, 11.7 Hz, 1H), 1.91–1.85 (m, 1H), 1.84–1.73 (m, 1H), 1.80 (s, 3H), 1.58 (s, 3H), 1.50 (s, 3H), 1.35–1.24 (m, 1H), 1.18 (s, 3H); 13C NMR (125 MHz, CDCl3): δ (p.p.m.) 165.9 (C), 154.6 (C), 138.3 (C), 138.2 (C), 137.8 (C), 135.5 (CH), 133.5 (CH), 130.6 (CH), 130.1 (C), 129.8 (CH), 128.7 (CH), 128.5 (CH), 127.7 (CH), 127.4 (CH), 97.6 (CH2), 93.1 (C), 79.7 (CH), 74.2 (CH), 74.1 (CH), 73.4 (CH), 69.9 (CH2), 56.0 (CH3), 45.7 (CH), 42.8 (C), 39.8 (CH2), 37.9 (C), 32.5 (CH2), 29.5 (CH3), 25.8 (CH2), 19.33 (CH3), 19.27 (CH3), 17.7 (CH3); HRMS (ESI): calcd for C36H42O8Na+ [M+Na]+ 625.2777, found 625.2777.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.Problematic one reflection with |I(obs)-I(calc)|/σW(I) greater than 10 (–2 3 1) has been omitted in the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2090 (2) 0.1750 (2) 0.91158 (15) 0.0210 (5)
C2 0.3204 (2) 0.0817 (2) 0.86310 (15) 0.0198 (5)
H2 0.3938 0.1143 0.8498 0.024*
C3 0.2821 (2) 0.0698 (2) 0.76154 (15) 0.0184 (4)
H3 0.1858 0.1295 0.7447 0.022*
C4 0.2914 (2) −0.0675 (2) 0.76837 (15) 0.0207 (5)
H4 0.3848 −0.1344 0.7883 0.025*
C5 0.2414 (2) −0.0651 (2) 0.66551 (15) 0.0225 (5)
H5B 0.2627 −0.1569 0.6672 0.027*
H5A 0.1431 −0.0182 0.6578 0.027*
C6 0.2999 (2) 0.0002 (2) 0.57150 (15) 0.0214 (5)
H6A 0.3951 −0.0565 0.5704 0.026*
H6B 0.2523 0.0104 0.5082 0.026*
C7 0.2877 (2) 0.1337 (2) 0.57361 (15) 0.0191 (5)
H7 0.191 0.191 0.5717 0.023*
C8 0.3583 (2) 0.1246 (2) 0.67110 (15) 0.0183 (4)
C9 0.3595 (2) 0.2595 (2) 0.66630 (16) 0.0199 (5)
H9B 0.4203 0.242 0.7246 0.024*
H9A 0.4028 0.2871 0.6028 0.024*
C10 0.2330 (2) 0.3811 (2) 0.66790 (16) 0.0198 (5)
H10 0.1778 0.413 0.602 0.024*
C11 0.1476 (2) 0.35654 (19) 0.75632 (16) 0.0197 (5)
C12 0.0331 (2) 0.3454 (2) 0.73994 (15) 0.0204 (5)
C13 −0.0137 (2) 0.2618 (2) 0.82427 (16) 0.0230 (5)
H13 −0.1038 0.2705 0.8228 0.028*
C14 0.0722 (2) 0.1738 (2) 0.90249 (16) 0.0229 (5)
H14 0.0479 0.1105 0.9525 0.027*
C15 0.1993 (2) 0.3171 (2) 0.86995 (15) 0.0207 (5)
C16 0.3299 (2) 0.3293 (2) 0.88962 (16) 0.0229 (5)
H16B 0.3555 0.2938 0.9636 0.034*
H16C 0.317 0.4222 0.865 0.034*
H16A 0.4005 0.2795 0.8529 0.034*
C17 0.0958 (2) 0.4076 (2) 0.92429 (16) 0.0243 (5)
H17A 0.0079 0.4077 0.9138 0.036*
H17B 0.092 0.4974 0.8955 0.036*
H17C 0.1216 0.3753 0.9981 0.036*
C18 −0.0437 (2) 0.3934 (2) 0.63817 (16) 0.0255 (5)
H18A −0.0215 0.4638 0.5908 0.038*
H18B −0.1396 0.4273 0.648 0.038*
H18C −0.0202 0.3204 0.6094 0.038*
C19 0.5062 (2) 0.0313 (2) 0.68131 (16) 0.0211 (5)
H19B 0.5135 −0.0561 0.6827 0.032*
H19C 0.5482 0.0244 0.7452 0.032*
H19A 0.5512 0.0659 0.6225 0.032*
O20 0.36857 (14) −0.04110 (14) 0.94740 (10) 0.0226 (3)
C21 0.3358 (2) −0.0133 (2) 1.03550 (16) 0.0229 (5)
O22 0.25645 (14) 0.11453 (14) 1.01974 (10) 0.0241 (3)
O23 0.37257 (15) −0.09211 (15) 1.11907 (11) 0.0301 (4)
O24 0.34533 (13) 0.19559 (14) 0.48470 (10) 0.0200 (3)
C25 0.2682 (2) 0.2569 (2) 0.39610 (15) 0.0204 (5)
O26 0.16003 (15) 0.25445 (15) 0.38570 (11) 0.0290 (4)
C27 0.3292 (2) 0.3303 (2) 0.31322 (15) 0.0192 (4)
C28 0.2699 (2) 0.3799 (2) 0.21389 (16) 0.0269 (5)
H28 0.1964 0.362 0.1999 0.032*
C29 0.3180 (2) 0.4553 (2) 0.13538 (17) 0.0300 (5)
H29 0.2785 0.4879 0.0673 0.036*
C30 0.4233 (2) 0.4832 (2) 0.15603 (17) 0.0299 (5)
H30 0.4553 0.5363 0.1023 0.036*
C31 0.4824 (2) 0.4342 (2) 0.25464 (17) 0.0279 (5)
H31 0.5552 0.4534 0.2684 0.033*
C32 0.4363 (2) 0.3575 (2) 0.33317 (16) 0.0218 (5)
H32 0.4776 0.3234 0.4008 0.026*
O33 0.28434 (14) 0.47725 (14) 0.66845 (11) 0.0239 (3)
C34 0.1863 (2) 0.6092 (2) 0.63828 (16) 0.0246 (5)
H34A 0.1914 0.653 0.6887 0.029*
H34B 0.0964 0.6075 0.6389 0.029*
C35 0.2054 (2) 0.6865 (2) 0.53358 (16) 0.0217 (5)
C36 0.1191 (2) 0.8177 (2) 0.49309 (17) 0.0260 (5)
H36 0.0481 0.8562 0.5317 0.031*
C37 0.1356 (2) 0.8926 (2) 0.39732 (17) 0.0313 (5)
H37 0.0773 0.9827 0.3712 0.038*
C38 0.2363 (2) 0.8373 (3) 0.33917 (18) 0.0346 (6)
H38 0.2465 0.8885 0.2727 0.041*
C39 0.3217 (2) 0.7074 (3) 0.37825 (18) 0.0334 (6)
H39 0.3909 0.6689 0.3383 0.04*
C40 0.3080 (2) 0.6325 (2) 0.47451 (17) 0.0269 (5)
H40 0.3688 0.5433 0.501 0.032*
O41 0.20301 (14) −0.09407 (14) 0.84612 (10) 0.0234 (3)
C42 0.2292 (2) −0.2270 (2) 0.89614 (17) 0.0287 (5)
H42B 0.194 −0.2359 0.9653 0.034*
H42A 0.3269 −0.2778 0.9054 0.034*
O43 0.17233 (17) −0.28080 (15) 0.84205 (12) 0.0328 (4)
C44 0.0307 (2) −0.2202 (2) 0.83398 (19) 0.0352 (6)
H44C −0.0029 −0.2401 0.9026 0.053*
H44A −0.0046 −0.254 0.7899 0.053*
H44B 0.0019 −0.1246 0.8039 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0266 (11) 0.0233 (12) 0.0175 (11) −0.0112 (9) 0.0021 (9) −0.0108 (9)
C2 0.0242 (11) 0.0197 (11) 0.0184 (11) −0.0102 (9) 0.0022 (9) −0.0081 (9)
C3 0.0212 (10) 0.0200 (11) 0.0184 (10) −0.0088 (9) 0.0023 (8) −0.0110 (9)
C4 0.0234 (11) 0.0212 (12) 0.0221 (11) −0.0102 (9) 0.0056 (9) −0.0118 (9)
C5 0.0293 (12) 0.0228 (12) 0.0238 (11) −0.0148 (10) 0.0043 (9) −0.0129 (9)
C6 0.0250 (11) 0.0233 (12) 0.0208 (11) −0.0103 (9) 0.0021 (9) −0.0124 (9)
C7 0.0210 (11) 0.0224 (11) 0.0182 (11) −0.0104 (9) 0.0059 (9) −0.0102 (9)
C8 0.0208 (11) 0.0191 (11) 0.0191 (10) −0.0086 (9) 0.0026 (8) −0.0108 (9)
C9 0.0224 (11) 0.0222 (12) 0.0201 (11) −0.0115 (9) 0.0036 (9) −0.0102 (9)
C10 0.0230 (11) 0.0192 (11) 0.0232 (11) −0.0112 (9) 0.0006 (9) −0.0105 (9)
C11 0.0204 (11) 0.0151 (11) 0.0264 (11) −0.0057 (9) 0.0014 (9) −0.0118 (9)
C12 0.0216 (11) 0.0181 (11) 0.0244 (11) −0.0058 (9) 0.0037 (9) −0.0137 (9)
C13 0.0203 (11) 0.0268 (12) 0.0281 (12) −0.0094 (10) 0.0054 (9) −0.0176 (10)
C14 0.0256 (12) 0.0237 (12) 0.0271 (12) −0.0122 (10) 0.0105 (10) −0.0168 (10)
C15 0.0224 (11) 0.0222 (12) 0.0228 (11) −0.0097 (9) 0.0032 (9) −0.0132 (9)
C16 0.0272 (12) 0.0264 (12) 0.0225 (11) −0.0127 (10) 0.0007 (9) −0.0143 (9)
C17 0.0287 (12) 0.0237 (12) 0.0256 (12) −0.0107 (10) 0.0043 (9) −0.0146 (10)
C18 0.0238 (11) 0.0270 (13) 0.0300 (12) −0.0107 (10) 0.0004 (10) −0.0136 (10)
C19 0.0236 (11) 0.0244 (12) 0.0206 (11) −0.0104 (9) 0.0040 (9) −0.0135 (9)
O20 0.0280 (8) 0.0228 (8) 0.0176 (7) −0.0086 (7) 0.0013 (6) −0.0086 (6)
C21 0.0209 (11) 0.0281 (13) 0.0234 (12) −0.0109 (10) 0.0025 (9) −0.0115 (10)
O22 0.0316 (8) 0.0251 (9) 0.0187 (8) −0.0111 (7) 0.0022 (6) −0.0112 (6)
O23 0.0337 (9) 0.0333 (9) 0.0214 (9) −0.0122 (7) −0.0010 (7) −0.0064 (7)
O24 0.0216 (7) 0.0235 (8) 0.0181 (7) −0.0104 (6) 0.0018 (6) −0.0088 (6)
C25 0.0211 (11) 0.0186 (11) 0.0229 (11) −0.0053 (9) −0.0003 (9) −0.0112 (9)
O26 0.0252 (9) 0.0362 (10) 0.0278 (8) −0.0154 (7) −0.0016 (7) −0.0080 (7)
C27 0.0208 (11) 0.0173 (11) 0.0211 (11) −0.0066 (9) 0.0018 (9) −0.0095 (9)
C28 0.0292 (12) 0.0304 (13) 0.0271 (12) −0.0163 (11) −0.0025 (10) −0.0098 (10)
C29 0.0380 (14) 0.0318 (14) 0.0219 (12) −0.0148 (11) −0.0017 (10) −0.0084 (10)
C30 0.0365 (13) 0.0330 (13) 0.0246 (12) −0.0198 (11) 0.0044 (10) −0.0073 (10)
C31 0.0286 (12) 0.0316 (13) 0.0308 (13) −0.0171 (11) 0.0036 (10) −0.0130 (10)
C32 0.0218 (11) 0.0227 (12) 0.0209 (11) −0.0065 (9) −0.0013 (9) −0.0092 (9)
O33 0.0247 (8) 0.0195 (8) 0.0317 (8) −0.0110 (7) −0.0002 (6) −0.0101 (7)
C34 0.0248 (11) 0.0210 (12) 0.0322 (12) −0.0088 (10) 0.0035 (10) −0.0146 (10)
C35 0.0232 (11) 0.0249 (12) 0.0252 (11) −0.0134 (9) −0.0005 (9) −0.0131 (9)
C36 0.0247 (12) 0.0270 (13) 0.0317 (13) −0.0109 (10) 0.0004 (10) −0.0153 (10)
C37 0.0319 (13) 0.0323 (14) 0.0318 (13) −0.0165 (11) −0.0032 (11) −0.0065 (11)
C38 0.0395 (14) 0.0462 (16) 0.0291 (13) −0.0300 (13) 0.0020 (11) −0.0090 (12)
C39 0.0321 (13) 0.0495 (17) 0.0345 (14) −0.0269 (13) 0.0136 (11) −0.0221 (12)
C40 0.0232 (12) 0.0292 (13) 0.0371 (13) −0.0128 (10) 0.0031 (10) −0.0191 (11)
O41 0.0320 (8) 0.0214 (8) 0.0227 (8) −0.0143 (7) 0.0076 (6) −0.0108 (6)
C42 0.0376 (13) 0.0233 (13) 0.0267 (12) −0.0149 (11) 0.0049 (10) −0.0063 (10)
O43 0.0443 (10) 0.0288 (9) 0.0386 (9) −0.0219 (8) 0.0153 (8) −0.0207 (7)
C44 0.0416 (15) 0.0379 (15) 0.0379 (14) −0.0252 (12) 0.0096 (11) −0.0164 (12)

Geometric parameters (Å, º)

C1—O22 1.457 (2) C18—H18B 0.98
C1—C14 1.514 (3) C18—H18C 0.98
C1—C15 1.533 (3) C19—H19B 0.98
C1—C2 1.548 (3) C19—H19C 0.98
C2—O20 1.454 (2) C19—H19A 0.98
C2—C3 1.537 (3) O20—C21 1.334 (2)
C2—H2 1.0 C21—O23 1.196 (3)
C3—C4 1.530 (3) C21—O22 1.347 (3)
C3—C8 1.561 (3) O24—C25 1.346 (2)
C3—H3 1.0 C25—O26 1.213 (2)
C4—O41 1.438 (2) C25—C27 1.490 (3)
C4—C5 1.530 (3) C27—C32 1.389 (3)
C4—H4 1.0 C27—C28 1.391 (3)
C5—C6 1.524 (3) C28—C29 1.383 (3)
C5—H5B 0.99 C28—H28 0.95
C5—H5A 0.99 C29—C30 1.379 (3)
C6—C7 1.512 (3) C29—H29 0.95
C6—H6A 0.99 C30—C31 1.382 (3)
C6—H6B 0.99 C30—H30 0.95
C7—O24 1.456 (2) C31—C32 1.379 (3)
C7—C8 1.537 (3) C31—H31 0.95
C7—H7 1.0 C32—H32 0.95
C8—C19 1.537 (3) O33—C34 1.428 (2)
C8—C9 1.553 (3) C34—C35 1.491 (3)
C9—C10 1.543 (3) C34—H34A 0.99
C9—H9B 0.99 C34—H34B 0.99
C9—H9A 0.99 C35—C36 1.390 (3)
C10—O33 1.436 (2) C35—C40 1.396 (3)
C10—C11 1.508 (3) C36—C37 1.379 (3)
C10—H10 1.0 C36—H36 0.95
C11—C12 1.348 (3) C37—C38 1.380 (3)
C11—C15 1.554 (3) C37—H37 0.95
C12—C13 1.473 (3) C38—C39 1.374 (4)
C12—C18 1.502 (3) C38—H38 0.95
C13—C14 1.330 (3) C39—C40 1.375 (3)
C13—H13 0.95 C39—H39 0.95
C14—H14 0.95 C40—H40 0.95
C15—C16 1.537 (3) O41—C42 1.400 (3)
C15—C17 1.541 (3) C42—O43 1.405 (3)
C16—H16B 0.98 C42—H42B 0.99
C16—H16C 0.98 C42—H42A 0.99
C16—H16A 0.98 O43—C44 1.421 (3)
C17—H17A 0.98 C44—H44C 0.98
C17—H17B 0.98 C44—H44A 0.98
C17—H17C 0.98 C44—H44B 0.98
C18—H18A 0.98
O22—C1—C14 107.39 (16) C15—C17—H17A 109.5
O22—C1—C15 112.26 (16) C15—C17—H17B 109.5
C14—C1—C15 109.44 (17) H17A—C17—H17B 109.5
O22—C1—C2 100.39 (15) C15—C17—H17C 109.5
C14—C1—C2 115.12 (16) H17A—C17—H17C 109.5
C15—C1—C2 111.91 (17) H17B—C17—H17C 109.5
O20—C2—C3 114.77 (16) C12—C18—H18A 109.5
O20—C2—C1 102.39 (15) C12—C18—H18B 109.5
C3—C2—C1 116.91 (17) H18A—C18—H18B 109.5
O20—C2—H2 107.4 C12—C18—H18C 109.5
C3—C2—H2 107.4 H18A—C18—H18C 109.5
C1—C2—H2 107.4 H18B—C18—H18C 109.5
C4—C3—C2 114.36 (16) C8—C19—H19B 109.5
C4—C3—C8 112.76 (16) C8—C19—H19C 109.5
C2—C3—C8 111.37 (16) H19B—C19—H19C 109.5
C4—C3—H3 105.9 C8—C19—H19A 109.5
C2—C3—H3 105.9 H19B—C19—H19A 109.5
C8—C3—H3 105.9 H19C—C19—H19A 109.5
O41—C4—C3 104.79 (15) C21—O20—C2 108.37 (16)
O41—C4—C5 109.40 (16) O23—C21—O20 124.3 (2)
C3—C4—C5 109.75 (17) O23—C21—O22 123.56 (19)
O41—C4—H4 110.9 O20—C21—O22 112.13 (18)
C3—C4—H4 110.9 C21—O22—C1 108.85 (15)
C5—C4—H4 110.9 C25—O24—C7 116.56 (15)
C6—C5—C4 114.71 (17) O26—C25—O24 123.60 (19)
C6—C5—H5B 108.6 O26—C25—C27 123.88 (19)
C4—C5—H5B 108.6 O24—C25—C27 112.51 (17)
C6—C5—H5A 108.6 C32—C27—C28 119.65 (19)
C4—C5—H5A 108.6 C32—C27—C25 122.37 (18)
H5B—C5—H5A 107.6 C28—C27—C25 117.85 (19)
C7—C6—C5 110.62 (16) C29—C28—C27 120.1 (2)
C7—C6—H6A 109.5 C29—C28—H28 120.0
C5—C6—H6A 109.5 C27—C28—H28 120.0
C7—C6—H6B 109.5 C30—C29—C28 120.0 (2)
C5—C6—H6B 109.5 C30—C29—H29 120.0
H6A—C6—H6B 108.1 C28—C29—H29 120.0
O24—C7—C6 110.82 (15) C29—C30—C31 120.2 (2)
O24—C7—C8 108.01 (15) C29—C30—H30 119.9
C6—C7—C8 112.06 (17) C31—C30—H30 119.9
O24—C7—H7 108.6 C32—C31—C30 120.3 (2)
C6—C7—H7 108.6 C32—C31—H31 119.8
C8—C7—H7 108.6 C30—C31—H31 119.8
C19—C8—C7 110.94 (16) C31—C32—C27 119.86 (19)
C19—C8—C9 104.78 (16) C31—C32—H32 120.1
C7—C8—C9 111.49 (16) C27—C32—H32 120.1
C19—C8—C3 110.89 (16) C34—O33—C10 113.59 (15)
C7—C8—C3 104.62 (15) O33—C34—C35 111.86 (17)
C9—C8—C3 114.26 (16) O33—C34—H34A 109.2
C10—C9—C8 123.76 (17) C35—C34—H34A 109.2
C10—C9—H9B 106.4 O33—C34—H34B 109.2
C8—C9—H9B 106.4 C35—C34—H34B 109.2
C10—C9—H9A 106.4 H34A—C34—H34B 107.9
C8—C9—H9A 106.4 C36—C35—C40 118.3 (2)
H9B—C9—H9A 106.5 C36—C35—C34 119.20 (19)
O33—C10—C11 113.16 (16) C40—C35—C34 122.5 (2)
O33—C10—C9 103.42 (15) C37—C36—C35 120.6 (2)
C11—C10—C9 114.58 (17) C37—C36—H36 119.7
O33—C10—H10 108.5 C35—C36—H36 119.7
C11—C10—H10 108.5 C36—C37—C38 120.4 (2)
C9—C10—H10 108.5 C36—C37—H37 119.8
C12—C11—C10 119.94 (18) C38—C37—H37 119.8
C12—C11—C15 117.22 (18) C39—C38—C37 119.4 (2)
C10—C11—C15 121.82 (17) C39—C38—H38 120.3
C11—C12—C13 118.68 (19) C37—C38—H38 120.3
C11—C12—C18 126.2 (2) C38—C39—C40 120.7 (2)
C13—C12—C18 114.38 (18) C38—C39—H39 119.6
C14—C13—C12 118.85 (19) C40—C39—H39 119.6
C14—C13—H13 120.6 C39—C40—C35 120.5 (2)
C12—C13—H13 120.6 C39—C40—H40 119.8
C13—C14—C1 119.8 (2) C35—C40—H40 119.8
C13—C14—H14 120.1 C42—O41—C4 116.28 (16)
C1—C14—H14 120.1 O41—C42—O43 112.97 (18)
C1—C15—C16 112.74 (17) O41—C42—H42B 109.0
C1—C15—C17 111.81 (17) O43—C42—H42B 109.0
C16—C15—C17 104.00 (16) O41—C42—H42A 109.0
C1—C15—C11 101.58 (15) O43—C42—H42A 109.0
C16—C15—C11 117.71 (17) H42B—C42—H42A 107.8
C17—C15—C11 109.19 (17) C42—O43—C44 112.09 (17)
C15—C16—H16B 109.5 O43—C44—H44C 109.5
C15—C16—H16C 109.5 O43—C44—H44A 109.5
H16B—C16—H16C 109.5 H44C—C44—H44A 109.5
C15—C16—H16A 109.5 O43—C44—H44B 109.5
H16B—C16—H16A 109.5 H44C—C44—H44B 109.5
H16C—C16—H16A 109.5 H44A—C44—H44B 109.5
O22—C1—C2—O20 26.87 (18) C3—C8—C9—C10 −51.5 (3)
C14—C1—C2—O20 −88.07 (19) C8—C9—C10—O33 176.60 (17)
C15—C1—C2—O20 146.14 (16) C8—C9—C10—C11 53.0 (3)
O22—C1—C2—C3 153.21 (16) O33—C10—C11—C12 137.37 (19)
C14—C1—C2—C3 38.3 (3) C9—C10—C11—C12 −104.4 (2)
C15—C1—C2—C3 −87.5 (2) O33—C10—C11—C15 −54.5 (2)
O20—C2—C3—C4 4.3 (2) C9—C10—C11—C15 63.8 (2)
C1—C2—C3—C4 −115.6 (2) C10—C11—C12—C13 150.34 (18)
O20—C2—C3—C8 −124.98 (18) C15—C11—C12—C13 −18.4 (3)
C1—C2—C3—C8 115.07 (19) C10—C11—C12—C18 −19.5 (3)
C2—C3—C4—O41 58.5 (2) C15—C11—C12—C18 171.80 (18)
C8—C3—C4—O41 −172.95 (15) C11—C12—C13—C14 −17.7 (3)
C2—C3—C4—C5 175.84 (17) C18—C12—C13—C14 153.33 (19)
C8—C3—C4—C5 −55.6 (2) C12—C13—C14—C1 9.1 (3)
O41—C4—C5—C6 163.01 (17) O22—C1—C14—C13 155.28 (18)
C3—C4—C5—C6 48.5 (2) C15—C1—C14—C13 33.2 (2)
C4—C5—C6—C7 −50.2 (2) C2—C1—C14—C13 −93.9 (2)
C5—C6—C7—O24 179.13 (16) O22—C1—C15—C16 53.1 (2)
C5—C6—C7—C8 58.4 (2) C14—C1—C15—C16 172.27 (16)
O24—C7—C8—C19 −65.5 (2) C2—C1—C15—C16 −58.9 (2)
C6—C7—C8—C19 56.9 (2) O22—C1—C15—C17 −63.6 (2)
O24—C7—C8—C9 50.9 (2) C14—C1—C15—C17 55.5 (2)
C6—C7—C8—C9 173.24 (16) C2—C1—C15—C17 −175.65 (16)
O24—C7—C8—C3 174.89 (15) O22—C1—C15—C11 −179.97 (16)
C6—C7—C8—C3 −62.8 (2) C14—C1—C15—C11 −60.82 (19)
C4—C3—C8—C19 −57.8 (2) C2—C1—C15—C11 68.0 (2)
C2—C3—C8—C19 72.3 (2) C12—C11—C15—C1 56.4 (2)
C4—C3—C8—C7 61.8 (2) C10—C11—C15—C1 −112.1 (2)
C2—C3—C8—C7 −168.02 (16) C12—C11—C15—C16 179.97 (18)
C4—C3—C8—C9 −175.95 (16) C10—C11—C15—C16 11.5 (3)
C2—C3—C8—C9 −45.8 (2) C12—C11—C15—C17 −61.8 (2)
C19—C8—C9—C10 −173.02 (18) C10—C11—C15—C17 129.69 (19)
C7—C8—C9—C10 66.9 (2) C3—C2—O20—C21 −149.52 (17)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C35–C40 benzene ring.

D—H···A D—H H···A D···A D—H···A
C34—H34A···O43i 0.99 2.42 3.377 (3) 163
C38—H38···O23ii 0.95 2.44 3.295 (3) 149
C31—H31···O33iii 0.95 2.49 3.426 (3) 168
C2—H2···O23iv 1.00 2.51 3.433 (3) 153
C16—H16A···O23iv 0.98 2.53 3.357 (3) 142
C19—H19C···O23iv 0.98 2.54 3.477 (3) 160
C18—H18C···Cgv 0.98 2.89 3.492 (3) 121

Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z−1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+2; (v) −x, −y+1, −z+1.

References

  1. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fukaya, K., Sugai, T., Yamaguchi, Y., Watanabe, A., Sato, T. & Chida, N. (2015). In preparation.
  3. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  4. Keil, J. M., Massa, W., Riedel, R., Seitz, G. & Wocadlo, S. (1994). Tetrahedron Lett. 35, 7923–7926.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  6. Nicolaou, K. C., Liu, J.-J., Yang, Z., Ueno, H., Sorensen, E. J., Claiborne, C. F., Guy, R. K., Hwang, C.-K., Nakada, M. & Nantermet, P. G. (1995). J. Am. Chem. Soc. 117, 634–644.
  7. Nicolaou, K. C., Ueno, H., Liu, J.-J., Nantermet, P. G., Yang, Z., Renaud, J., Paulvannan, K. & Chadha, R. (1995). J. Am. Chem. Soc. 117, 653–659.
  8. Nicolaou, K. C., Yang, Z., Liu, J.-J., Nantermet, P. G., Claiborne, C. F., Renaud, J., Guy, R. K. & Shibayama, K. (1995). J. Am. Chem. Soc. 117, 645–652.
  9. Ohba, S., Chinen, A., Matsumoto, Y. & Chida, N. (2003). Acta Cryst. E59, o1476–o1477.
  10. Oishi, T., Fukaya, K., Yamaguchi, Y., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015). Acta Cryst. E71, 466–472. [DOI] [PMC free article] [PubMed]
  11. Oishi, T., Yamaguchi, Y., Fukaya, K., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015). Acta Cryst. E71, 8–11. [DOI] [PMC free article] [PubMed]
  12. Paquette, L. A. & Zhao, M. (1998). J. Am. Chem. Soc. 120, 5203–5212.
  13. Poujol, H., Ahond, A., Al Mourabit, A., Chiaroni, A., Poupat, C., Riche, C. & Potier, P. (1997). Tetrahedron, 53, 5169–5184.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Wall, M. E. & Wani, M. C. (1995). ACS Symp. Ser. 583, 18–30.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015007136/is5396sup1.cif

e-71-00490-sup1.cif (30.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007136/is5396Isup2.hkl

e-71-00490-Isup2.hkl (293.1KB, hkl)

CCDC reference: 1058739

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES