Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 22;71(Pt 5):m114–m115. doi: 10.1107/S2056989015007008

Hydro­thermal synthesis and crystal structure of a new lanthanum(III) coordination polymer with fumaric acid

Hayet Anana a, Chahrazed Trifa a, Sofiane Bouacida b,a,*, Chaouki Boudaren a, Hocine Merazig a
PMCID: PMC4420125  PMID: 25995891

Abstract

The title compound, poly[di­aqua­tris­(μ4-but-2-enedioato)(μ2-but-2-enedioic acid)dilanthanum(III)], [La2(C4H2O4)3(C4H4O4)(H2O)2]n, was synthesized by the reaction of lanthanum chloride penta­hydrate with fumaric acid under hydro­thermal conditions. The asymmetric unit comprises an LaIII cation, one and a half fumarate dianions (L 2−), one a half-mol­ecule of fumaric acid (H2 L) and one coordinated water mol­ecule. Each LaIII cation has the same nine-coordinate environment and is surrounded by eight O atoms from seven distinct fumarate moieties, including one proton­ated fumarate unit and one water mol­ecule in a distorted tricapped trigonal–prismatic environment. The LaO8(H2O) polyhedra centres are edge-shared through three carboxyl­ate bridges of the fumarate ligand, forming chains in three dimensions to construct the MOF. The crystal structure is stabilized by O—H⋯O hydrogen-bond inter­actions between the coordin­ated water mol­ecule and the carboxyl­ate O atoms, and also between oxygen atoms of fumaric acid

Keywords: crystal structure, hydro­thermal synthesis, lanthanum(III) coordination polymer, fumaric acid

Related literature  

For general background to metal coordination polymers, see: Fujita et al. (1994); Bénard et al. (2000); Zhang et al. (2000). For structures involving fumarate ligands and transition metals, see: Dalai et al. (2002); Xie et al. (2003); Devereux et al. (2000). For rare earth fumarates, see: Zhang et al. (2006); Li & Zou (2006); Liu et al. (2011). For reported La—O distances, see: Dan et al. (2005).graphic file with name e-71-0m114-scheme1.jpg

Experimental  

Crystal data  

  • [La2(C4H2O4)3(C4H4O4)(H2O)2]

  • M r = 386.05

  • Monoclinic, Inline graphic

  • a = 8.4299 (5) Å

  • b = 14.6789 (8) Å

  • c = 8.8096 (5) Å

  • β = 103.318 (3)°

  • V = 1060.80 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.07 mm−1

  • T = 295 K

  • 0.12 × 0.11 × 0.08 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.677, T max = 0.796

  • 17677 measured reflections

  • 4523 independent reflections

  • 3901 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.043

  • S = 1.02

  • 4523 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.06 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015007008/lh5759sup1.cif

e-71-0m114-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007008/lh5759Isup2.hkl

e-71-0m114-Isup2.hkl (217.1KB, hkl)

ORTEP-3 . DOI: 10.1107/S2056989015007008/lh5759fig1.tif

An ORTEP-3 (Farrugia, 2012) drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

. DOI: 10.1107/S2056989015007008/lh5759fig2.tif

A packing diagram of (I), showing the two-dimensional layered framework structure.

. DOI: 10.1107/S2056989015007008/lh5759fig3.tif

A packing diagram of (I), showing the three-dimensional open-framework structure.

CCDC reference: 1058359

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1WH1WO8i 0.80(3) 2.06(3) 2.7995(19) 154(3)
O1WH2WO4ii 0.75(3) 2.17(3) 2.8913(18) 163(3)
O5H5O2iii 0.82 1.85 2.655(2) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Professor Mhamed Boudraa, Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1 Algeria, for his technical assistance with the single-crystal X-ray data collection.

supplementary crystallographic information

S1. Comment

Coordination polymers of metal cations with organic multifunctional ligands have been received increasing interest, for these coordination polymers have one-, two-, three dimensional structures as well as potential applications as catalysts, magnetic and porous materials (Fujita et al., 1994; Bénard et al., 2000; Zhang et al., 2000). Multi-carboxyle ligands are useful to construct unique architectures of metal-coordination polymers. The synthesis of novel lanthanide polymers and studies on luminescent, electric and magnetic properties of the compounds are of interest. Some metal coordination polymers using fumaric acid as ligand have been reported in the literature containing transition metals Cu (Dalai et al., 2002), Zn (Xie et al., 2003), and Mn (Devereux et al., 2000). A series of rare earth fumarate complexes have also been reported (Zhang et al., 2006; Li & Zou., 2006; Liu et al., 2011). Hydrothermal synthesis has some advantages over conventional methods for the formation of a polymer framework with higher dimensions. Fumaric acid was used to synthesize a new lanthanum (III) coordination polymer, [La2(C4H2O4)3(C4H4O4)(H2O)2]n, (I), by using hydrothermal synthesis method and the crystal structure is reported in the present article.

The structure of the asymmetric unit of the title complex is shown in Fig. 1. It comprises a LaIII cation, 1.5 fumarate dianions (L2-), 0.5 fumaric acid (H2L) and one water ligand. Overall there are three types of La—O bridging modes in (I), the fumarate dianion exhibits full monodentate and µ2-oxo-bridged chelating patterns, respectively, whereas the fumaric acid shows a double monodentate coordination mode. The LaIII cation is sited within a distorted tricapped trigonal prism defined by nine O atoms derived from seven different bridging ligands and a coordinated water molecule. One of the carboxylate groups, derived from L2-, is chelating, and the remaining six carboxylates coordinate in a monodentate mode. The average La—O bond distance of LaO8(H2O) polyhedra is 2.56 Å; the shortest La—O separation is 2.4510 (12) Å, resulting from the La1—O1 bond of a bridging carboxylate, and the longest is 2.7696 (12) Å for La1—O7 from the edge-sharing La—O bond. Other distances of La—O(fum) vary in the range of 2.4963 (12)–2.6117 (13) Å, comparable to the usual La—O(carboxylate) bonds reported (Dan et al., 2005). The LaO8(H2O) coordination polyhedra are edge-shared through one monodentate carboxylate O atoms (O7) and two bidentate carboxylate groups (O3—C4—O4 and O1—C1—O2) to generate infinite lanthanum-oxygen chains (Fig. 2). The adjacent lanthanum (III) centres have a general separation of 4.739 Å. Furthermore, the one-dimensional infinite chains are linked together with monodentate fumarate ligands to form a two-dimensional layered paralell to the crystallographic (100) (Fig.2), and the shortest interlayer distance of La···La is 8.430 Å (calculated between the two lanthanum atom centres). This type of organic-inorganic layered structure has been reported of the lanthanide fumarates: [Ln2(fum)3(H2fum)(H2O)2 (Ln: Ce or Nd)] (Zhang et al., 2006). Finally, the two-dimensional layered structure is further constructed into a three-dimensional open framework by the ligands (Fig.3). The crystal is stabilized by hydrogen bond interactions between the coordinated water and carboxylate O atoms.

S2. Experimental

All chemicals were purchased from commercial sources and used as received without further purification. The title compound, was synthesized by using a hydrothermal method. Typically mixtures of fumaric acid (1 mmol, 0.116 g), lanthanum (III) chloride pentahydrate (0.5 mmol, 0.185 g) were suspended in H2O (ca 10 ml). The mixture was then placed in a Teflon lined autoclave, sealed and heated to 413 K for 2 days. The reactor was cooled to room temperature over a period of 1 h. The light brown crystals suitable for X-ray diffraction were filtered, washed with water and dried in air.

S3. Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. The remaining H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atom (C and O atoms) with C—H = 0.93 Å and O—H = 0.82 Å with Uiso(H) = 1.2 or 1.5Ueq(C,O). H atoms of the water molecule were located in difference Fourier maps and refined isotropically.

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 2012) drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I), showing the two-dimensional layered framework structure.

Fig. 3.

Fig. 3.

A packing diagram of (I), showing the three-dimensional open-framework structure.

Crystal data

[La2(C4H2O4)3(C4H4O4)(H2O)2] F(000) = 736
Mr = 386.05 Dx = 2.417 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7844 reflections
a = 8.4299 (5) Å θ = 2.8–34.5°
b = 14.6789 (8) Å µ = 4.07 mm1
c = 8.8096 (5) Å T = 295 K
β = 103.318 (3)° Prism, brown
V = 1060.80 (11) Å3 0.12 × 0.11 × 0.08 mm
Z = 4

Data collection

Bruker APEXII diffractometer 3901 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
CCD rotation images, thin slices scans θmax = 34.6°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −13→13
Tmin = 0.677, Tmax = 0.796 k = −23→22
17677 measured reflections l = −14→14
4523 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0198P)2 + 0.4033P] where P = (Fo2 + 2Fc2)/3
4523 reflections (Δ/σ)max = 0.003
171 parameters Δρmax = 2.06 e Å3
0 restraints Δρmin = −0.67 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.91794 (19) 0.17630 (11) 0.3525 (2) 0.0094 (3)
C2 1.09547 (19) 0.16975 (12) 0.3538 (2) 0.0116 (3)
H2 1.1677 0.1528 0.4461 0.014*
C3 1.1551 (2) 0.18705 (11) 0.22925 (19) 0.0104 (3)
H3 1.0842 0.2006 0.1344 0.012*
C4 1.33672 (18) 0.18480 (11) 0.24064 (19) 0.0091 (3)
C5 0.9759 (2) 0.43916 (12) 0.3056 (2) 0.0136 (3)
C6 1.0339 (2) 0.50146 (12) 0.4385 (2) 0.0137 (3)
H6 1.1173 0.5426 0.4366 0.016*
C7 0.53342 (19) 0.10280 (11) −0.12552 (19) 0.0100 (3)
C8 0.5242 (2) 0.04320 (11) 0.0094 (2) 0.0115 (3)
H8 0.5533 0.0672 0.1098 0.014*
O1 0.81442 (14) 0.18896 (8) 0.22694 (15) 0.0121 (2)
O2 0.88376 (15) 0.16822 (9) 0.48504 (15) 0.0135 (2)
O1W 0.68340 (16) 0.47790 (9) 0.02557 (17) 0.0140 (2)
O3 1.38637 (14) 0.22346 (9) 0.13278 (15) 0.0128 (2)
O4 1.42800 (14) 0.14400 (8) 0.35629 (14) 0.0113 (2)
O5 1.05314 (17) 0.44700 (11) 0.19286 (17) 0.0232 (3)
H5 1.0152 0.4107 0.1232 0.035*
O6 0.86412 (16) 0.38537 (9) 0.30246 (15) 0.0165 (3)
O7 0.59366 (15) 0.18252 (8) −0.09912 (15) 0.0106 (2)
O8 0.48750 (15) 0.07304 (9) −0.26313 (14) 0.0145 (2)
La1 0.631512 (10) 0.309568 (6) 0.097101 (10) 0.00675 (3)
H1W 0.656 (3) 0.4969 (19) −0.062 (4) 0.030 (7)*
H2W 0.651 (3) 0.513 (2) 0.071 (4) 0.036 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0093 (6) 0.0092 (7) 0.0107 (7) 0.0008 (5) 0.0044 (5) 0.0017 (5)
C2 0.0082 (6) 0.0166 (8) 0.0099 (7) 0.0000 (5) 0.0019 (5) 0.0009 (6)
C3 0.0115 (6) 0.0117 (7) 0.0090 (6) −0.0008 (5) 0.0045 (5) 0.0017 (6)
C4 0.0075 (6) 0.0111 (7) 0.0088 (6) −0.0007 (5) 0.0021 (5) −0.0002 (5)
C5 0.0131 (7) 0.0166 (8) 0.0108 (7) −0.0010 (6) 0.0021 (6) −0.0006 (6)
C6 0.0142 (7) 0.0153 (8) 0.0113 (7) −0.0037 (6) 0.0021 (6) −0.0020 (6)
C7 0.0113 (6) 0.0107 (7) 0.0088 (7) −0.0007 (5) 0.0036 (5) −0.0001 (5)
C8 0.0170 (7) 0.0099 (7) 0.0085 (7) −0.0018 (6) 0.0046 (6) 0.0000 (5)
O1 0.0097 (5) 0.0139 (6) 0.0117 (5) 0.0015 (4) 0.0005 (4) 0.0016 (5)
O2 0.0118 (5) 0.0187 (6) 0.0117 (6) 0.0027 (4) 0.0063 (4) 0.0031 (5)
O1W 0.0171 (6) 0.0110 (6) 0.0141 (6) 0.0019 (4) 0.0040 (5) 0.0016 (5)
O3 0.0105 (5) 0.0175 (6) 0.0113 (6) −0.0030 (4) 0.0043 (4) 0.0025 (5)
O4 0.0095 (5) 0.0133 (6) 0.0102 (5) 0.0009 (4) 0.0006 (4) 0.0002 (4)
O5 0.0213 (7) 0.0347 (8) 0.0161 (6) −0.0129 (6) 0.0094 (5) −0.0119 (6)
O6 0.0180 (6) 0.0191 (7) 0.0118 (6) −0.0075 (5) 0.0024 (5) −0.0026 (5)
O7 0.0138 (5) 0.0082 (5) 0.0108 (5) −0.0019 (4) 0.0051 (4) −0.0010 (4)
O8 0.0218 (6) 0.0138 (6) 0.0086 (5) −0.0061 (5) 0.0051 (5) −0.0017 (5)
La1 0.00657 (4) 0.00743 (4) 0.00650 (4) −0.00024 (3) 0.00204 (3) −0.00044 (3)

Geometric parameters (Å, º)

C1—O1 1.255 (2) C8—H8 0.93
C1—O2 1.271 (2) O1W—H1W 0.80 (3)
C1—C2 1.497 (2) O1W—H2W 0.75 (3)
C2—C3 1.332 (2) O3—La1iv 2.5032 (11)
C2—H2 0.93 O4—La1v 2.4963 (12)
C3—C4 1.512 (2) O5—H5 0.82
C3—H3 0.93 La1—C7vi 3.0398 (15)
C4—O3 1.2583 (19) O6—La1 2.5926 (13)
C4—O4 1.276 (2) O7—La1 2.5127 (12)
C5—O6 1.225 (2) O1—La1 2.4510 (12)
C5—O5 1.312 (2) O1W—La1 2.6117 (13)
C5—C6 1.477 (2) O2—La1vi 2.5631 (11)
C6—C6i 1.338 (3) O7—La1ii 2.7696 (12)
C6—H6 0.93 O8—La1ii 2.5784 (12)
C7—O8 1.263 (2) La1—O4vii 2.4963 (12)
C7—O7 1.2755 (19) La1—O3viii 2.5032 (11)
C7—C8 1.492 (2) La1—O2ii 2.5631 (11)
C7—La1ii 3.0398 (15) La1—O8vi 2.5784 (12)
C8—C8iii 1.331 (3) La1—O7vi 2.7696 (12)
O1—C1—O2 124.39 (15) O1—La1—O7 75.61 (4)
O1—C1—C2 120.47 (14) O4vii—La1—O7 70.40 (4)
O2—C1—C2 115.14 (15) O3viii—La1—O7 74.57 (4)
C3—C2—C1 123.19 (16) O1—La1—O2ii 77.47 (4)
C3—C2—H2 118.4 O4vii—La1—O2ii 96.12 (4)
C1—C2—H2 118.4 O3viii—La1—O2ii 153.47 (4)
C2—C3—C4 120.64 (15) O7—La1—O2ii 79.32 (4)
C2—C3—H3 119.7 O1—La1—O8vi 125.08 (4)
C4—C3—H3 119.7 O4vii—La1—O8vi 85.20 (4)
O3—C4—O4 124.78 (14) O3viii—La1—O8vi 77.55 (4)
O3—C4—C3 116.62 (14) O7—La1—O8vi 145.63 (4)
O4—C4—C3 118.60 (13) O2ii—La1—O8vi 128.50 (4)
O6—C5—O5 123.56 (17) O1—La1—O6 72.00 (4)
O6—C5—C6 121.97 (15) O4vii—La1—O6 137.48 (4)
O5—C5—C6 114.46 (15) O3viii—La1—O6 129.99 (4)
C6i—C6—C5 119.8 (2) O7—La1—O6 138.97 (4)
C6i—C6—H6 120.1 O2ii—La1—O6 69.69 (4)
C5—C6—H6 120.1 O8vi—La1—O6 75.14 (4)
O8—C7—O7 120.91 (15) O1—La1—O1W 132.35 (4)
O8—C7—C8 120.09 (15) O4vii—La1—O1W 69.95 (4)
O7—C7—C8 118.95 (15) O3viii—La1—O1W 134.19 (4)
O8—C7—La1ii 56.95 (8) O7—La1—O1W 122.55 (4)
O7—C7—La1ii 65.65 (8) O2ii—La1—O1W 65.59 (4)
C8—C7—La1ii 164.17 (11) O8vi—La1—O1W 66.82 (4)
C8iii—C8—C7 122.0 (2) O6—La1—O1W 67.70 (4)
C8iii—C8—H8 119 O1—La1—O7vi 77.26 (4)
C7—C8—H8 119 O4vii—La1—O7vi 126.88 (4)
C1—O1—La1 138.87 (11) O3viii—La1—O7vi 67.52 (4)
C1—O2—La1vi 136.53 (11) O7—La1—O7vi 132.16 (3)
La1—O1W—H1W 122 (2) O2ii—La1—O7vi 131.09 (4)
La1—O1W—H2W 116 (2) O8vi—La1—O7vi 48.61 (4)
H1W—O1W—H2W 102 (3) O6—La1—O7vi 62.92 (4)
C4—O3—La1iv 138.62 (11) O1W—La1—O7vi 104.86 (4)
C4—O4—La1v 136.10 (11) O1—La1—C7vi 100.89 (4)
C5—O5—H5 109.5 O4vii—La1—C7vi 107.86 (4)
C5—O6—La1 138.30 (12) O3viii—La1—C7vi 74.18 (4)
C7—O7—La1 142.04 (10) O7—La1—C7vi 148.44 (4)
C7—O7—La1ii 89.54 (9) O2ii—La1—C7vi 131.24 (4)
La1—O7—La1ii 127.52 (4) O8vi—La1—C7vi 24.23 (4)
C7—O8—La1ii 98.82 (10) O6—La1—C7vi 63.86 (4)
O1—La1—O4vii 146.01 (4) O1W—La1—C7vi 83.41 (4)
O1—La1—O3viii 91.46 (4) O7vi—La1—C7vi 24.81 (4)
O4vii—La1—O3viii 79.57 (4)
O1—C1—C2—C3 8.0 (3) C1—O1—La1—O6 22.16 (15)
O2—C1—C2—C3 −171.99 (16) C1—O1—La1—O1W 55.44 (17)
C1—C2—C3—C4 176.25 (15) C1—O1—La1—O7vi −43.17 (16)
C2—C3—C4—O3 −162.53 (16) C1—O1—La1—C7vi −35.55 (16)
C2—C3—C4—O4 18.0 (2) C7—O7—La1—O1 70.34 (18)
O6—C5—C6—C6i 1.5 (3) La1ii—O7—La1—O1 −124.25 (6)
O5—C5—C6—C6i −178.9 (2) C7—O7—La1—O4vii −109.49 (18)
O8—C7—C8—C8iii 3.3 (3) La1ii—O7—La1—O4vii 55.92 (6)
O7—C7—C8—C8iii −174.2 (2) C7—O7—La1—O3viii −25.29 (17)
La1ii—C7—C8—C8iii −71.3 (5) La1ii—O7—La1—O3viii 140.12 (7)
O2—C1—O1—La1 70.6 (2) C7—O7—La1—O2ii 150.00 (18)
C2—C1—O1—La1 −109.40 (17) La1ii—O7—La1—O2ii −44.59 (6)
O1—C1—O2—La1vi −9.9 (3) C7—O7—La1—O8vi −62.2 (2)
C2—C1—O2—La1vi 170.08 (11) La1ii—O7—La1—O8vi 103.23 (7)
O4—C4—O3—La1iv −33.2 (3) C7—O7—La1—O6 109.01 (17)
C3—C4—O3—La1iv 147.30 (13) La1ii—O7—La1—O6 −85.58 (8)
O3—C4—O4—La1v 72.1 (2) C7—O7—La1—O1W −158.26 (17)
C3—C4—O4—La1v −108.47 (15) La1ii—O7—La1—O1W 7.15 (8)
O5—C5—O6—La1 −30.8 (3) C7—O7—La1—O7vi 13.0 (2)
C6—C5—O6—La1 148.76 (14) La1ii—O7—La1—O7vi 178.394 (15)
O8—C7—O7—La1 154.08 (13) C7—O7—La1—C7vi −17.1 (2)
C8—C7—O7—La1 −28.5 (3) La1ii—O7—La1—C7vi 148.33 (6)
La1ii—C7—O7—La1 168.47 (17) C5—O6—La1—O1 117.06 (19)
O8—C7—O7—La1ii −14.40 (15) C5—O6—La1—O4vii −42.3 (2)
C8—C7—O7—La1ii 163.03 (13) C5—O6—La1—O3viii −166.68 (17)
O7—C7—O8—La1ii 15.68 (17) C5—O6—La1—O7 77.5 (2)
C8—C7—O8—La1ii −161.72 (12) C5—O6—La1—O2ii 34.12 (18)
C1—O1—La1—O4vii 176.91 (14) C5—O6—La1—O8vi −107.59 (19)
C1—O1—La1—O3viii −109.72 (16) C5—O6—La1—O1W −36.94 (18)
C1—O1—La1—O7 176.62 (16) C5—O6—La1—O7vi −158.3 (2)
C1—O1—La1—O2ii 94.61 (16) C5—O6—La1—C7vi −130.57 (19)
C1—O1—La1—O8vi −33.94 (17)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) x+1, y, z; (v) x+1, −y+1/2, z+1/2; (vi) x, −y+1/2, z+1/2; (vii) x−1, −y+1/2, z−1/2; (viii) x−1, y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···O8ix 0.80 (3) 2.06 (3) 2.7995 (19) 154 (3)
O1W—H2W···O4x 0.75 (3) 2.17 (3) 2.8913 (18) 163 (3)
O5—H5···O2ii 0.82 1.85 2.655 (2) 167

Symmetry codes: (ii) x, −y+1/2, z−1/2; (ix) −x+1, y+1/2, −z−1/2; (x) −x+2, y+1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5759).

References

  1. Bénard, S. Yu. P., Yu, P., Audière, J. P., Rivière, E., Clément, R., Guilhem, J., Tchertanov, L. & Nakatani, K. (2000). J. Am. Chem. Soc. 122, 9444–9454.
  2. Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.
  3. Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  5. Dalai, S., Mukherjee, P. S., Zangrando, E., Lioret, F. & Chaudhuri, N. R. (2002). J. Chem. Soc. Dalton Trans. pp. 822–823.
  6. Dan, M., Cottereau, G. & Rao, C. R. (2005). Solid State Sci. 7, 437–443.
  7. Devereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205–1211. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.
  10. Li, X. & Zou, Y.-Q. (2006). J. Coord. Chem. 59, 1131–1138.
  11. Liu, P., Cao, W., Wang, J., Zeng, R. & Zeng, Z. (2011). Acta Cryst. E67, m1433–m1434. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Xie, H. Z., Zheng, Y. Q. & Shou, K. Q. (2003). J. Coord. Chem. 56, 1291–1297.
  15. Zhang, X. X., Chui, S. S. Y. & Williams, I. D. (2000). J. Appl. Phys. 87, 6007–6009.
  16. Zhang, G. & Yang, G. Ma. J. S. (2006). Cryst. Growth Des. 6, 934–939.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015007008/lh5759sup1.cif

e-71-0m114-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007008/lh5759Isup2.hkl

e-71-0m114-Isup2.hkl (217.1KB, hkl)

ORTEP-3 . DOI: 10.1107/S2056989015007008/lh5759fig1.tif

An ORTEP-3 (Farrugia, 2012) drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

. DOI: 10.1107/S2056989015007008/lh5759fig2.tif

A packing diagram of (I), showing the two-dimensional layered framework structure.

. DOI: 10.1107/S2056989015007008/lh5759fig3.tif

A packing diagram of (I), showing the three-dimensional open-framework structure.

CCDC reference: 1058359

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES