Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 25;71(Pt 5):558–560. doi: 10.1107/S2056989015007926

Crystal structure of disodium dicobalt(II) iron(III) tris­(orthophosphate) with an alluaudite-like structure

Adam Bouraima a,b,*, Abderrazzak Assani a, Mohamed Saadi a, Thomas Makani b, Lahcen El Ammari a
PMCID: PMC4420128  PMID: 25995879

The transition metal orthophosphates Na2 M 2Fe(PO4)3 (M = Co, Ni) crystallize in an alluaudite-type structure. The chains characterizing the alluaudite structure are then built up from [M 2O10] units alternating with [FeO6] octa­hedra.

Keywords: crystal structure, transition metal phosphates, solid-state reaction synthesis, Na2Co2Fe(PO4)3, alluaudite-like structure

Abstract

The title compound, Na2Co2Fe(PO4)3, was synthesized by a solid-state reaction. This new stoichiometric phase crystallizes in an alluaudite-like structure. In this structure, all atoms are in general positions except for four atoms which are located at the special positions of the C2/c space group. One Co atom, one P and one Na atom are all located on Wyckoff position 4e (2), while the second Na atom is located on an inversion centre 4a (-1). The other Co and Fe atoms occupy a general position with a statistical distribution. The open framework results from [(Co,Fe)2O10] units of edge-sharing [(Co,Fe)O6] octa­hedra, which alternate with [CoO6] octa­hedra that form infinite chains running along the [10-1] direction. These chains are linked together through PO4 tetra­hedra by the sharing of vertices so as to build layers perpendicular to [010]. The three-dimensional framework is accomplished by the stacking of these layers, leading to the formation of two types of tunnels parallel to [010] in which the Na+ cations are located, each cation being surrounded by eight O atoms.

Chemical context  

A particular focus of ours concerns compounds with alluaudite-type structures, and we set the objective of synthesising new transition-metal-based phosphates within the well-known alluaudite family. We are inter­ested in this because transition-metal phosphates are of great inter­est with applications in several fields. Compounds belonging to the large structural family of derivatives (Moore, 1971) have been of continuing inter­est due to their structural properties, such as their open-framework architecture and their physical properties. Moreover, the flexibility of the alluaudite structure will, no doubt, permit the use of alluaudite-type phosphates for practical applications, such as corrosion inhibition, passivation of metal surfaces and catalysis (Korzenski et al., 1999). These materials abound in magnetic properties of metallic phosphate. Transition metals can play an important role in microporous skeletons by supplying an active catalytic site keeping the selectivity of frames (Weil et al., 2009). Metallic phosphates present a multitude of structural wealth which are the object of studies of catalysts (Viter & Nagornyi, 2009; Gao & Gao, 2005), ion exchange (Clearfield, 1988) and the positive electrode in lithium and sodium batteries (Trad et al., 2010). As a result of the presence of channels parallel to [100], alluaudite-type compounds exhibit electronic and/or ionic conductivity, as has been shown by Warner et al. (1993). In this context, we have explored A 2O–MO–P2O5 systems, where A is a monovalent cation and M a divalent cation. A new alluaudite structure of formula Na2Co2Fe(PO4)3 was synthesized by solid-state reaction. During our investigation of these systems, we characterized the following compounds: AgMg3(PO4)(HPO4)2 (Assani et al., 2011a ), Ag2Ni3(HPO4)(PO4)2 (Assani et al., 2011b ) and Na2Ni2Fe(PO4)3 (Essehli et al., 2011). The present paper reports the solid-state synthesis and characterization of a new transition-metal phosphate, namely, Na2Co2Fe(PO4)3.

Structural commentary  

In the refinement of the first model of this structure, we placed the Fe atom in Wyckoff position 4e and Co in the general position 8f. The results of the refinement of this model are acceptable if we disregard the high weight values. However, bond-valence-sum calculations (Brown & Altermatt, 1985) are not in favor of this model and, consequently, the examination of all possible models led to the best one in which half of the Co, Na, and P atoms are in Wyckoff position 4e, and the second Na atom is in position 4a of the C2/c space group, the remaining Co and Fe fulfilling the 8f site. In this case, bond-valence-sum calculations for Co22+, Co12+, Fe12+, Na1+, Na2+, P15+ and P25+ ions are as expected, viz 1.78, 2.02, 2.81, 1.25, 0.94, 4.98 and 4.99 valence units, respectively.

The new phase of formula Na2Co2Fe(PO4)3 crystallizes in the alluaudite type. The structure of this compound is built up from two edge-sharing [(Co,Fe)O6] octa­hedra, leading to the formation of [(Co,Fe)2O10] dimers that are connected by a common edge to [CoO6] octa­hedra, as shown in Fig. 1. The linkage of alternating [CoO6] and [(Co,Fe)2O10] octa­hedra leads to infinite chains along the [10Inline graphic] direction. These chains held together via the vertices of the PO4 tetra­hedra in such a way as to build layers perpendicular to [010] (Fig. 2). The junction of different octa­hedra by common vertices of PO4 tetra­hedra form an open three-dimensional framework that delimits two types of tunnels parallel to [100] and [001] accommodating the Na+ cations, as shown in Fig. 3. In the tunnels, each sodium atom is surrounded by eight oxygen atoms with Na1—O and Na2—O bond lengths varying between 2.2895 (9) and 2.8754 (10) Å) and between 2.3940 (9) and 2.8513 (16) Å, respectively.

Figure 1.

Figure 1

The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) −x + Inline graphic, y + Inline graphic, −z + Inline graphic; (ii) −x + Inline graphic, −y + Inline graphic, −z + 1; (iii) −x + 1, −y + 1, −z; (iv) −x + Inline graphic, −y + Inline graphic, −z; (v) −x + 1, y, −z + Inline graphic; (vi) x − Inline graphic, −y + Inline graphic, z − Inline graphic; (vii) x, −y + 1, z + Inline graphic; (viii) x, −y + 1, z − Inline graphic; (ix) −x + 2, y, −z + Inline graphic; (x) −x + 2, −y + 1, −z + 1; (xi) x + Inline graphic, −y + Inline graphic, z + Inline graphic; (xii) −x + Inline graphic, −y + Inline graphic, −z + 1.

Figure 2.

Figure 2

A layer perpendicular to the b axis, resulting from the chains connected via the vertices of the PO4 tetra­hedra.

Figure 3.

Figure 3

Polyhedral representation of Na2Co2Fe(PO4)3 showing the tunnels running along the [001] direction.

Synthesis and crystallization  

Na2Co2Fe(PO4)3 was synthesized by a solid-state reaction by mixing the precursors of sodium (Na2CO3), cobalt (CoCO3), iron (Fe2O3) and phospho­ric acid 85% wt. The various precursors were taken in the molar ratio Na:Co:Fe:P = 2:2:1:3.

After different heat treatments in a platinum crucible up to 873 K, the reaction mixture was heated to the melting point of 1000 K. The molten product was then cooled to room temperature at a rate of 5 K h−1. The resulting product contained brown crystals of a suitable size for the X-ray diffraction study.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. The same x, y and z parameters and anisotropic displacement parameters are used for Co1 and Fe1 sharing the same site. Three reflections, (042), (110) and (Inline graphic42), probably affected by the beam-stop, were removed during the last refinement cycle. The highest peak and the deepest hole in the final Fourier map are at 0.40 Å and 0.42 Å from Na1 and Na2, respectively.

Table 1. Experimental details.

Crystal data
Chemical formula Na2Co2Fe(PO4)3
M r 504.60
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c () 11.7106(6), 12.4083(7), 6.4285(3)
() 113.959(2)
V (3) 853.63(8)
Z 4
Radiation type Mo K
(mm1) 6.26
Crystal size (mm) 0.31 0.25 0.19
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.504, 0.748
No. of measured, independent and observed [I > 2(I)] reflections 15289, 1882, 1807
R int 0.030
(sin /)max (1) 0.806
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.016, 0.046, 1.10
No. of reflections 1879
No. of parameters 95
max, min (e 3) 0.70, 0.92

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015007926/br2248sup1.cif

e-71-00558-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007926/br2248Isup2.hkl

e-71-00558-Isup2.hkl (92.6KB, hkl)

CCDC reference: 1060932

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.

supplementary crystallographic information

Crystal data

Na2Co2Fe(PO4)3 F(000) = 972
Mr = 504.60 Dx = 3.926 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2yc Cell parameters from 1882 reflections
a = 11.7106 (6) Å θ = 2.5–34.9°
b = 12.4083 (7) Å µ = 6.26 mm1
c = 6.4285 (3) Å T = 296 K
β = 113.959 (2)° Block, brown
V = 853.63 (8) Å3 0.31 × 0.25 × 0.19 mm
Z = 4

Data collection

Bruker X8 APEX diffractometer 1882 independent reflections
Radiation source: fine-focus sealed tube 1807 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 34.9°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −18→18
Tmin = 0.504, Tmax = 0.748 k = −20→20
15289 measured reflections l = −9→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.026P)2 + 1.033P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046 (Δ/σ)max = 0.002
S = 1.10 Δρmax = 0.70 e Å3
1879 reflections Δρmin = −0.92 e Å3
95 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0049 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.717910 (14) 0.842242 (12) 0.13094 (2) 0.00487 (5) 0.50
Co1 0.717910 (14) 0.842242 (12) 0.13094 (2) 0.00487 (5) 0.50
Co2 0.5000 0.731171 (18) 0.2500 0.00645 (5)
P1 0.76483 (3) 0.60996 (2) 0.37608 (4) 0.00406 (6)
P2 0.5000 0.29046 (3) 0.2500 0.00393 (7)
Na1 0.5000 0.5000 0.0000 0.01623 (17)
Na2 1.0000 0.48710 (12) 0.7500 0.0343 (3)
O1 0.77862 (8) 0.67773 (7) 0.18650 (14) 0.00805 (14)
O2 0.83828 (8) 0.66574 (7) 0.60820 (14) 0.00755 (14)
O3 0.82670 (9) 0.49990 (7) 0.38761 (16) 0.00954 (15)
O4 0.62676 (8) 0.60150 (7) 0.32737 (15) 0.00871 (14)
O5 0.60276 (8) 0.36657 (7) 0.25279 (15) 0.00938 (15)
O6 0.45930 (8) 0.21880 (7) 0.03503 (13) 0.00683 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.00449 (7) 0.00506 (7) 0.00514 (7) −0.00034 (4) 0.00203 (5) −0.00037 (4)
Co1 0.00449 (7) 0.00506 (7) 0.00514 (7) −0.00034 (4) 0.00203 (5) −0.00037 (4)
Co2 0.00659 (9) 0.00646 (9) 0.00728 (9) 0.000 0.00381 (7) 0.000
P1 0.00506 (11) 0.00343 (11) 0.00348 (10) −0.00004 (8) 0.00150 (8) −0.00003 (7)
P2 0.00357 (15) 0.00423 (15) 0.00352 (14) 0.000 0.00094 (11) 0.000
Na1 0.0262 (4) 0.0032 (3) 0.0068 (3) 0.0017 (3) −0.0061 (3) 0.0008 (2)
Na2 0.0187 (5) 0.0569 (8) 0.0218 (5) 0.000 0.0026 (4) 0.000
O1 0.0094 (3) 0.0097 (3) 0.0052 (3) −0.0011 (3) 0.0031 (3) 0.0014 (3)
O2 0.0097 (3) 0.0073 (3) 0.0049 (3) −0.0018 (3) 0.0021 (3) −0.0015 (2)
O3 0.0113 (4) 0.0061 (3) 0.0109 (3) 0.0026 (3) 0.0043 (3) −0.0012 (3)
O4 0.0057 (3) 0.0080 (3) 0.0124 (3) −0.0002 (3) 0.0037 (3) 0.0002 (3)
O5 0.0063 (3) 0.0081 (3) 0.0124 (3) −0.0022 (3) 0.0024 (3) 0.0024 (3)
O6 0.0065 (3) 0.0089 (3) 0.0047 (3) −0.0008 (3) 0.0019 (2) −0.0019 (2)

Geometric parameters (Å, º)

Fe1—O5i 1.9456 (9) P2—O6v 1.5468 (8)
Fe1—O3i 2.0158 (9) P2—O6 1.5468 (8)
Fe1—O2ii 2.0374 (9) Na1—O5iii 2.2895 (9)
Fe1—O6iii 2.0543 (9) Na1—O5 2.2895 (9)
Fe1—O1iv 2.0724 (8) Na1—O4iii 2.3835 (9)
Fe1—O1 2.1434 (9) Na1—O4 2.3836 (9)
Co2—O4v 2.1072 (9) Na1—O4viii 2.5217 (9)
Co2—O4 2.1072 (9) Na1—O4v 2.5218 (9)
Co2—O2ii 2.1567 (9) Na1—O5v 2.8754 (10)
Co2—O2vi 2.1568 (9) Na1—O5viii 2.8754 (10)
Co2—O6vii 2.1632 (8) Na2—O3ix 2.3940 (9)
Co2—O6iii 2.1632 (8) Na2—O3 2.3940 (9)
P1—O4 1.5206 (9) Na2—O3x 2.5269 (10)
P1—O3 1.5336 (9) Na2—O3vii 2.5269 (10)
P1—O1 1.5422 (9) Na2—O2ix 2.8158 (15)
P1—O2 1.5502 (9) Na2—O2 2.8158 (15)
P2—O5v 1.5240 (9) Na2—O6xi 2.8513 (16)
P2—O5 1.5241 (9) Na2—O6xii 2.8513 (16)
O5i—Fe1—O3i 94.91 (4) O5—Na1—O4viii 73.59 (3)
O5i—Fe1—O2ii 110.51 (4) O4iii—Na1—O4viii 67.32 (4)
O3i—Fe1—O2ii 86.18 (4) O4—Na1—O4viii 112.68 (4)
O5i—Fe1—O6iii 164.12 (4) O5iii—Na1—O4v 73.59 (3)
O3i—Fe1—O6iii 98.29 (4) O5—Na1—O4v 106.41 (3)
O2ii—Fe1—O6iii 79.27 (3) O4iii—Na1—O4v 112.68 (4)
O5i—Fe1—O1iv 86.97 (4) O4—Na1—O4v 67.32 (4)
O3i—Fe1—O1iv 99.56 (4) O4viii—Na1—O4v 180.0
O2ii—Fe1—O1iv 161.21 (4) O5iii—Na1—O5v 126.25 (4)
O6iii—Fe1—O1iv 82.19 (3) O5—Na1—O5v 53.75 (4)
O5i—Fe1—O1 81.40 (4) O4iii—Na1—O5v 86.18 (3)
O3i—Fe1—O1 174.04 (4) O4—Na1—O5v 93.82 (3)
O2ii—Fe1—O1 90.73 (3) O4viii—Na1—O5v 114.14 (3)
O6iii—Fe1—O1 86.11 (3) O4v—Na1—O5v 65.86 (3)
O1iv—Fe1—O1 84.97 (3) O5iii—Na1—O5viii 53.75 (4)
O4v—Co2—O4 80.44 (5) O5—Na1—O5viii 126.25 (4)
O4v—Co2—O2ii 165.05 (3) O4iii—Na1—O5viii 93.82 (3)
O4—Co2—O2ii 86.54 (3) O4—Na1—O5viii 86.18 (3)
O4v—Co2—O2vi 86.54 (3) O4viii—Na1—O5viii 65.86 (3)
O4—Co2—O2vi 165.05 (3) O4v—Na1—O5viii 114.14 (3)
O2ii—Co2—O2vi 107.25 (5) O5v—Na1—O5viii 180.0
O4v—Co2—O6vii 92.44 (3) O3ix—Na2—O3 172.39 (8)
O4—Co2—O6vii 113.30 (3) O3ix—Na2—O3x 81.52 (3)
O2ii—Co2—O6vii 85.96 (3) O3—Na2—O3x 97.99 (3)
O2vi—Co2—O6vii 74.34 (3) O3ix—Na2—O3vii 97.99 (3)
O4v—Co2—O6iii 113.30 (3) O3—Na2—O3vii 81.52 (3)
O4—Co2—O6iii 92.44 (3) O3x—Na2—O3vii 172.68 (8)
O2ii—Co2—O6iii 74.34 (3) O3ix—Na2—O2ix 55.93 (3)
O2vi—Co2—O6iii 85.96 (3) O3—Na2—O2ix 117.11 (5)
O6vii—Co2—O6iii 146.65 (5) O3x—Na2—O2ix 62.15 (3)
O4—P1—O3 112.98 (5) O3vii—Na2—O2ix 111.51 (5)
O4—P1—O1 108.59 (5) O3ix—Na2—O2 117.11 (5)
O3—P1—O1 108.95 (5) O3—Na2—O2 55.93 (3)
O4—P1—O2 110.92 (5) O3x—Na2—O2 111.51 (5)
O3—P1—O2 106.53 (5) O3vii—Na2—O2 62.15 (3)
O1—P1—O2 108.78 (5) O2ix—Na2—O2 76.15 (5)
O5v—P2—O5 103.42 (7) O3ix—Na2—O6xi 116.10 (5)
O5v—P2—O6v 108.79 (5) O3—Na2—O6xi 71.28 (4)
O5—P2—O6v 112.97 (5) O3x—Na2—O6xi 83.54 (4)
O5v—P2—O6 112.97 (5) O3vii—Na2—O6xi 103.11 (4)
O5—P2—O6 108.79 (5) O2ix—Na2—O6xi 145.12 (3)
O6v—P2—O6 109.82 (7) O2—Na2—O6xi 126.19 (2)
O5iii—Na1—O5 180.0 O3ix—Na2—O6xii 71.28 (4)
O5iii—Na1—O4iii 78.23 (3) O3—Na2—O6xii 116.10 (5)
O5—Na1—O4iii 101.77 (3) O3x—Na2—O6xii 103.11 (4)
O5iii—Na1—O4 101.77 (3) O3vii—Na2—O6xii 83.54 (4)
O5—Na1—O4 78.23 (3) O2ix—Na2—O6xii 126.19 (2)
O4iii—Na1—O4 180.0 O2—Na2—O6xii 145.12 (3)
O5iii—Na1—O4viii 106.41 (3) O6xi—Na2—O6xii 52.71 (4)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, −y+3/2, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+3/2, −y+3/2, −z; (v) −x+1, y, −z+1/2; (vi) x−1/2, −y+3/2, z−1/2; (vii) x, −y+1, z+1/2; (viii) x, −y+1, z−1/2; (ix) −x+2, y, −z+3/2; (x) −x+2, −y+1, −z+1; (xi) x+1/2, −y+1/2, z+1/2; (xii) −x+3/2, −y+1/2, −z+1.

References

  1. Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40. [DOI] [PMC free article] [PubMed]
  2. Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011a). Acta Cryst. E67, i5. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  5. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Clearfield, A. (1988). Chem. Rev. 88, 125–148.
  7. Essehli, R., El Bali, B., Benmokhtar, S., Bouziane, K., Manoun, B., Abdalslam, M. A. & Ehrenberg, H. (2011). J. Alloys Compd. 509, 1163–1171.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Gao, D. & Gao, Q. (2005). Micropor. Mesopor. Mater. 85, 365–373.
  10. Korzenski, M. B., Kolis, J. W. & Long, G. J. (1999). J. Solid State Chem. 147, 390–398.
  11. Moore, P. B. (1971). Am. Mineral. 56, 1955–1975.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562. [DOI] [PubMed]
  14. Viter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935–939.
  15. Warner, T. E., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301–309.
  16. Weil, M., Đorđević, T., Lengauer, C. L. & Kolitsch, U. (2009). Solid State Sci. 11, 2111–2117.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015007926/br2248sup1.cif

e-71-00558-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007926/br2248Isup2.hkl

e-71-00558-Isup2.hkl (92.6KB, hkl)

CCDC reference: 1060932

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES