Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 25;71(Pt 5):o351–o352. doi: 10.1107/S2056989015007938

Crystal structure of 1,1′-{(dodecane-1,12-di­yl)bis­[(aza­niumylyl­idene)methanylyl­idene]}bis­(naphthalen-2-olate)

Kamel Ouari a,*, Moufida Merzougui a, Sabrina Bendia a, Corinne Bailly b
PMCID: PMC4420129  PMID: 25995943

Abstract

The title compound, C34H40N2O2, exists in an extended conformation and has crystallographically imposed centrosymmetry. The crystal packing can be described as being composed of parallel layers stacked along [010]. The zwitterionic structure is stabilized by an intra­molecular N—H⋯O hydrogen-bond inter­action.

Keywords: crystal structure; 1,12-di­amino­dodeca­ne; 2-hy­droxy-1-naphthaldehyde; hydrogen bonds

Related literature  

The compound is synthesized using two procedures, the ultrasound and the conventional methods. We found that the ultrasound irradiation method is more convenient and efficient. For conventional synthesis of similar compounds, see: Ouari et al. (2015a ); Mohammadi & Rastegari (2012); Bhowmik et al. (2011). For ultrasonic synthesis of similar compounds, see: Rayati & Abdolalian (2013); Khan et al. (2014); Kanagarajan et al. (2011). For related crystal structures, see: Ouari et al. (2010, 2015b ); Popović et al. (2001); Friscic et al. (1998); Bi et al. (2012); Temel et al. (2010). For their applications, see: Köse et al. (2015); Grivani et al. (2013); Amin et al. (2010); Panneerselvam et al. (2009); Nasr et al. (2009); Nejo et al. (2009); Taha et al. (2012). graphic file with name e-71-0o351-scheme1.jpg

Experimental  

Crystal data  

  • C34H40N2O2

  • M r = 508.68

  • Monoclinic, Inline graphic

  • a = 54.400 (5) Å

  • b = 4.7465 (4) Å

  • c = 10.7022 (9) Å

  • β = 96.318 (2)°

  • V = 2746.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.50 × 0.14 × 0.06 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.682, T max = 0.746

  • 17506 measured reflections

  • 3271 independent reflections

  • 2313 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.125

  • S = 1.04

  • 3271 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015007938/mw2131sup1.cif

e-71-0o351-sup1.cif (551KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007938/mw2131Isup2.hkl

e-71-0o351-Isup2.hkl (179.7KB, hkl)

. DOI: 10.1107/S2056989015007938/mw2131fig1.tif

The title compound with atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

c . DOI: 10.1107/S2056989015007938/mw2131fig2.tif

Crystal packing of the title compound viewed along the c axis.

CCDC reference: 1032833

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1NO1 0.94(2) 1.75(2) 2.5498(18) 140.6(19)

Acknowledgments

The authors gratefully acknowledge the financial support from The Algerian Ministry of Higher Education and Scientific Research. They also acknowledge the help of Dr Jean WEISS from CLAC laboratory at the University of Strasbourg, France.

supplementary crystallographic information

S0.1. Synthesis and crystallization

Ultrasonication method

A reaction flask containing 0.344g (2mmol) of 2-hy­droxy-1-naphthaldehyde and 0.508g (1mmol) of 1,12-di­amino­dodecane, mixed and ground to a fine powder in a mortar, was immersed in an ultrasonic bath containing water at a temperature of 50 °C. The reaction mixture was exposed to ultrasound irradiation for 40 min. Upon completion, based on TLC analysis (silica gel, CH2Cl2/MeOH, 9.5/0.5, V/V) the product was washed with methanol (3 x 3 mL) and di­ethyl ether (3 x 3 mL) and filtered. Single crystals, suitable for X-ray diffraction, were obtained after 2 days of crystallization from DMSO/MeOH.

Color: Yellow, Yield: 88 %, mp: 148°C. Analysis calculated for C34H40N2O2: C, 80.27; H, 7.92; N, 5.50%; found: C, 80.06; H, 7.80; N, 5.78%.

Conventional method

To a solution of 0.172 g (1mmol) of 2-hy­droxy-1-naphthaldehyde in 5 mL of methanol was added 0.254 g (0.5 mmol) of 1,2-di­amino­dodecane dissolved in 5 mL of the same solvent.The mixture was stirred and refluxed for 3 hours under a nitro­gen atmosphere. At completion, based on TLC analysis, the resulting compound was filtered and washed with methanol and di­ethyl ether to afford pure product in 62% yield.

S0.2. Refinement

The iminium H atom was located from a difference Fourier map and refined isotropically. C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å (CH) or 0.99 Å (CH2) with Uiso(H) = 1.2Ueq (C—Har.).

S1. Results and discussion

Schiff base ligands can be easily synthesized using conventional or ultrasonic irradiation methods by reacting primary amines and carbonyl compounds in which the azomethine bond is formed and they can used to form complexes (Ouari et al., 2015a., Mohammadi et al., 2012; Bhowmik et al., 2011., Grivani et al., 2013; Nejo et al., 2009., Rayati et al., 2013., Khan et al., 2014., Kanagarajan et al., 2011).

The synthesis via ultrasound irradiation is an efficient, fast, high yielding method and is a more economical synthetic process for the preparation of the Schiff base compound than the conventional method.

The azomethine group >C=N of the Schiff base can form stable metal complexes by coordinating through the nitro­gen atom (Ouari et al., 2015b., Ouari et al., 2010 ). Schiff base ligands have many applications including anti-microbial agents (Köse et al., 2015., Taha et al.;2012., Panneerselvam et al., 2009), anti-tumor agents, (Nasr et al., 2009) and as xanthine oxidase inhibitors (Amin et al., 2010).

This compound crystallized in the monoclinic space group C2/c, whereas the related compounds(C26H24N2O2, C28H28N2O2) (Friscic et al., 1998), (C28H26N2O2) (Bi et al., 2012) and (C28H20N2O2—CHCL3) (Popović et al., 2001) crystallized in the orthorhombic space groups Pbca, Pbcn, P212121, and P212121, respectively. The hydrogen atom in the title compound is located on the nitro­gen atom (Fig.1). The C1—O1 bond length of 1.2802 (19)Å indicates double-bond character while the N1—C11 bond length of 1.2994 (19)Å indicates single-bond character thus confirming the zwitterionic formulation. Similar results have been reported (Temel et al., 2010]. The crystal packing can be described as parallel chains along the c axis (Fig. 2). It is stabilized by intra­molecular N—H···O hydrogen bonding (Table 1) and by weak inter­molecular C—H···π ring inter­actions. These inter­actions link the molecules within the layers and also link the layers together thereby reinforcing the cohesion of the ionic structure.

Figures

Fig. 1.

Fig. 1.

The title compound with atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the c axis.

Crystal data

C34H40N2O2 F(000) = 1096
Mr = 508.68 Dx = 1.230 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 54.400 (5) Å Cell parameters from 3931 reflections
b = 4.7465 (4) Å θ = 3.0–27.8°
c = 10.7022 (9) Å µ = 0.08 mm1
β = 96.318 (2)° T = 173 K
V = 2746.6 (4) Å3 Prism, yellow
Z = 4 0.50 × 0.14 × 0.06 mm

Data collection

Bruker APEXII CCD diffractometer 3271 independent reflections
Radiation source: sealed tube 2313 reflections with I > 2σ(I)
Triumph monochromator Rint = 0.036
φ and ω scans θmax = 27.9°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −70→70
Tmin = 0.682, Tmax = 0.746 k = −6→5
17506 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: mixed
wR(F2) = 0.125 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0503P)2 + 2.2119P] where P = (Fo2 + 2Fc2)/3
3271 reflections (Δ/σ)max < 0.001
176 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.11107 (3) −0.3639 (3) 1.08101 (14) 0.0273 (3)
C2 0.09446 (3) −0.5389 (3) 1.14296 (15) 0.0345 (4)
H2 0.1011 −0.6682 1.2056 0.041*
C3 0.06975 (3) −0.5229 (4) 1.11383 (17) 0.0386 (4)
H3 0.0594 −0.6413 1.1570 0.046*
C4 0.05853 (3) −0.3340 (4) 1.02027 (16) 0.0329 (4)
C5 0.03264 (3) −0.3230 (4) 0.99173 (19) 0.0448 (5)
H5 0.0225 −0.4413 1.0362 0.054*
C6 0.02183 (3) −0.1460 (5) 0.90169 (19) 0.0478 (5)
H6 0.0043 −0.1410 0.8833 0.057*
C7 0.03675 (3) 0.0275 (4) 0.83679 (19) 0.0434 (4)
H7 0.0293 0.1510 0.7737 0.052*
C8 0.06204 (3) 0.0223 (4) 0.86294 (16) 0.0357 (4)
H8 0.0718 0.1428 0.8175 0.043*
C9 0.07384 (3) −0.1580 (3) 0.95574 (14) 0.0267 (3)
C10 0.10041 (3) −0.1712 (3) 0.98713 (13) 0.0248 (3)
C11 0.11636 (3) 0.0138 (3) 0.93099 (14) 0.0261 (3)
H11 0.1092 0.1468 0.8714 0.031*
C12 0.15676 (3) 0.2039 (3) 0.90007 (15) 0.0287 (3)
H12A 0.1668 0.3092 0.9673 0.034*
H12B 0.1468 0.3419 0.8467 0.034*
C13 0.17384 (3) 0.0464 (3) 0.82076 (15) 0.0280 (3)
H13A 0.1638 −0.0594 0.7537 0.034*
H13B 0.1838 −0.0912 0.8743 0.034*
C14 0.19108 (3) 0.2470 (3) 0.76130 (15) 0.0284 (3)
H14A 0.2013 0.3492 0.8288 0.034*
H14B 0.1810 0.3879 0.7102 0.034*
C15 0.20806 (3) 0.0982 (3) 0.67812 (14) 0.0282 (3)
H15A 0.2186 −0.0370 0.7301 0.034*
H15B 0.1978 −0.0108 0.6129 0.034*
C16 0.22456 (3) 0.2977 (3) 0.61412 (14) 0.0289 (3)
H16A 0.2346 0.4090 0.6793 0.035*
H16B 0.2140 0.4308 0.5611 0.035*
C17 0.24187 (3) 0.1500 (3) 0.53257 (14) 0.0292 (3)
H17A 0.2526 0.0186 0.5858 0.035*
H17B 0.2319 0.0369 0.4680 0.035*
N1 0.14027 (2) 0.0119 (3) 0.95644 (12) 0.0288 (3)
O1 0.13443 (2) −0.3838 (3) 1.11158 (11) 0.0359 (3)
H1N 0.1458 (4) −0.130 (5) 1.014 (2) 0.065 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0341 (8) 0.0276 (7) 0.0212 (7) −0.0011 (6) 0.0076 (6) −0.0064 (6)
C2 0.0435 (10) 0.0325 (8) 0.0281 (8) −0.0035 (7) 0.0066 (7) 0.0023 (7)
C3 0.0423 (10) 0.0389 (9) 0.0367 (9) −0.0129 (8) 0.0131 (8) 0.0029 (8)
C4 0.0314 (8) 0.0353 (9) 0.0335 (9) −0.0074 (7) 0.0105 (7) −0.0075 (7)
C5 0.0312 (9) 0.0536 (11) 0.0510 (12) −0.0139 (8) 0.0115 (8) −0.0061 (9)
C6 0.0245 (9) 0.0620 (13) 0.0568 (12) −0.0024 (8) 0.0033 (8) −0.0112 (10)
C7 0.0336 (9) 0.0506 (11) 0.0449 (11) 0.0052 (8) −0.0008 (8) −0.0043 (9)
C8 0.0300 (9) 0.0396 (9) 0.0377 (9) −0.0007 (7) 0.0048 (7) 0.0002 (7)
C9 0.0273 (8) 0.0277 (8) 0.0262 (7) −0.0021 (6) 0.0075 (6) −0.0076 (6)
C10 0.0271 (8) 0.0262 (7) 0.0221 (7) −0.0016 (6) 0.0077 (6) −0.0050 (6)
C11 0.0281 (8) 0.0282 (7) 0.0231 (7) 0.0020 (6) 0.0073 (6) −0.0030 (6)
C12 0.0267 (8) 0.0326 (8) 0.0286 (8) −0.0028 (6) 0.0107 (6) −0.0011 (6)
C13 0.0259 (8) 0.0324 (8) 0.0271 (8) 0.0001 (6) 0.0097 (6) −0.0008 (6)
C14 0.0233 (7) 0.0346 (8) 0.0286 (8) 0.0003 (6) 0.0087 (6) −0.0003 (6)
C15 0.0265 (7) 0.0341 (8) 0.0253 (8) 0.0002 (6) 0.0092 (6) −0.0001 (6)
C16 0.0256 (8) 0.0366 (8) 0.0259 (8) 0.0003 (6) 0.0093 (6) −0.0023 (6)
C17 0.0270 (8) 0.0354 (8) 0.0267 (8) 0.0002 (6) 0.0096 (6) −0.0008 (6)
N1 0.0259 (7) 0.0345 (7) 0.0275 (7) −0.0004 (6) 0.0096 (5) 0.0016 (6)
O1 0.0323 (6) 0.0435 (7) 0.0317 (6) 0.0024 (5) 0.0026 (5) 0.0042 (5)

Geometric parameters (Å, º)

C1—O1 1.2802 (19) C12—N1 1.4553 (19)
C1—C10 1.433 (2) C12—C13 1.522 (2)
C1—C2 1.442 (2) C12—H12A 0.9900
C2—C3 1.348 (2) C12—H12B 0.9900
C2—H2 0.9500 C13—C14 1.524 (2)
C3—C4 1.430 (2) C13—H13A 0.9900
C3—H3 0.9500 C13—H13B 0.9900
C4—C5 1.409 (2) C14—C15 1.525 (2)
C4—C9 1.413 (2) C14—H14A 0.9900
C5—C6 1.362 (3) C14—H14B 0.9900
C5—H5 0.9500 C15—C16 1.518 (2)
C6—C7 1.394 (3) C15—H15A 0.9900
C6—H6 0.9500 C15—H15B 0.9900
C7—C8 1.374 (2) C16—C17 1.5232 (19)
C7—H7 0.9500 C16—H16A 0.9900
C8—C9 1.411 (2) C16—H16B 0.9900
C8—H8 0.9500 C17—C17i 1.518 (3)
C9—C10 1.449 (2) C17—H17A 0.9900
C10—C11 1.414 (2) C17—H17B 0.9900
C11—N1 1.2994 (19) N1—H1N 0.94 (2)
C11—H11 0.9500
O1—C1—C10 122.68 (14) N1—C12—H12B 109.3
O1—C1—C2 119.65 (15) C13—C12—H12B 109.3
C10—C1—C2 117.67 (14) H12A—C12—H12B 108.0
C3—C2—C1 121.38 (16) C12—C13—C14 111.58 (13)
C3—C2—H2 119.3 C12—C13—H13A 109.3
C1—C2—H2 119.3 C14—C13—H13A 109.3
C2—C3—C4 122.38 (15) C12—C13—H13B 109.3
C2—C3—H3 118.8 C14—C13—H13B 109.3
C4—C3—H3 118.8 H13A—C13—H13B 108.0
C5—C4—C9 120.10 (17) C13—C14—C15 113.24 (13)
C5—C4—C3 120.99 (16) C13—C14—H14A 108.9
C9—C4—C3 118.92 (15) C15—C14—H14A 108.9
C6—C5—C4 121.31 (17) C13—C14—H14B 108.9
C6—C5—H5 119.3 C15—C14—H14B 108.9
C4—C5—H5 119.3 H14A—C14—H14B 107.7
C5—C6—C7 119.16 (17) C16—C15—C14 113.62 (13)
C5—C6—H6 120.4 C16—C15—H15A 108.8
C7—C6—H6 120.4 C14—C15—H15A 108.8
C8—C7—C6 120.85 (18) C16—C15—H15B 108.8
C8—C7—H7 119.6 C14—C15—H15B 108.8
C6—C7—H7 119.6 H15A—C15—H15B 107.7
C7—C8—C9 121.47 (17) C15—C16—C17 113.89 (13)
C7—C8—H8 119.3 C15—C16—H16A 108.8
C9—C8—H8 119.3 C17—C16—H16A 108.8
C8—C9—C4 117.11 (14) C15—C16—H16B 108.8
C8—C9—C10 123.66 (14) C17—C16—H16B 108.8
C4—C9—C10 119.23 (14) H16A—C16—H16B 107.7
C11—C10—C1 118.31 (14) C17i—C17—C16 113.82 (17)
C11—C10—C9 121.19 (14) C17i—C17—H17A 108.8
C1—C10—C9 120.43 (13) C16—C17—H17A 108.8
N1—C11—C10 123.61 (15) C17i—C17—H17B 108.8
N1—C11—H11 118.2 C16—C17—H17B 108.8
C10—C11—H11 118.2 H17A—C17—H17B 107.7
N1—C12—C13 111.46 (13) C11—N1—C12 123.87 (14)
N1—C12—H12A 109.3 C11—N1—H1N 112.7 (13)
C13—C12—H12A 109.3 C12—N1—H1N 123.4 (13)
O1—C1—C2—C3 179.64 (16) C2—C1—C10—C11 176.23 (13)
C10—C1—C2—C3 0.1 (2) O1—C1—C10—C9 179.73 (14)
C1—C2—C3—C4 0.2 (3) C2—C1—C10—C9 −0.7 (2)
C2—C3—C4—C5 179.79 (17) C8—C9—C10—C11 4.3 (2)
C2—C3—C4—C9 0.1 (2) C4—C9—C10—C11 −175.79 (13)
C9—C4—C5—C6 0.5 (3) C8—C9—C10—C1 −178.81 (14)
C3—C4—C5—C6 −179.20 (17) C4—C9—C10—C1 1.1 (2)
C4—C5—C6—C7 −0.1 (3) C1—C10—C11—N1 2.6 (2)
C5—C6—C7—C8 −0.2 (3) C9—C10—C11—N1 179.54 (14)
C6—C7—C8—C9 0.1 (3) N1—C12—C13—C14 179.84 (13)
C7—C8—C9—C4 0.3 (2) C12—C13—C14—C15 −178.46 (13)
C7—C8—C9—C10 −179.84 (16) C13—C14—C15—C16 177.58 (14)
C5—C4—C9—C8 −0.5 (2) C14—C15—C16—C17 179.05 (13)
C3—C4—C9—C8 179.13 (15) C15—C16—C17—C17i 179.32 (17)
C5—C4—C9—C10 179.57 (15) C10—C11—N1—C12 −179.25 (14)
C3—C4—C9—C10 −0.8 (2) C13—C12—N1—C11 −116.21 (16)
O1—C1—C10—C11 −3.3 (2)

Symmetry code: (i) −x+1/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1 0.94 (2) 1.75 (2) 2.5498 (18) 140.6 (19)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: MW2131).

References

  1. Amin, R., Krammer, B., Abdel-Kader, N., Verwanger, T. & El-Ansary, A. (2010). Eur. J. Med. Chem. 45, 372–378. [DOI] [PubMed]
  2. Bhowmik, P., Drew, M. G. B. & Chattopadhyay, S. (2011). Inorg. Chim. Acta, 366, 62–67.
  3. Bi, S., Wang, A., Bi, C., Fan, Y., Xiao, Y., Liu, S. & Wang, Q. (2012). Inorg. Chem. Commun. 15, 167–171.
  4. Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Friscic, T., Kaitner, B. & Mestrovic, E. (1998). Croat. Chem. Acta, 71, 87–98.
  6. Grivani, G., Delkhosh, S., Fejfarová, K., Dušek, M. & Khalaji, A. D. (2013). Inorg. Chem. Commun. 27, 82–87.
  7. Kanagarajan, V., Ezhilarasi, M. R. & Gopalakrishnan, M. (2011). Spectrochim. Acta Part A, 78, 635–639. [DOI] [PubMed]
  8. Khan, K. M., Jamil, W., Ambreen, N., Taha, M., Perveen, S. & Morales, G. A. (2014). Ultrason. Sonochem. 21, 1200–1205. [DOI] [PubMed]
  9. Köse, M., Ceyhan, G., Tümer, M., Demirtaş, I., İbrahim, , Gönül, , İlyas, & McKee, V. (2015). Spectrochim. Acta Part A, 137, 477–485. [DOI] [PubMed]
  10. Mohammadi, K. & Rastegari, M. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 97, 711–716. [DOI] [PubMed]
  11. Nasr, G., Petit, E., Supuran, C. T., Winum, J. Y. & Barboiu, M. (2009). Bioorg. Med. Chem. Lett 19, 6014–6017. [DOI] [PubMed]
  12. Nejo, A. A., Kolawole, G. A., Opoku, A. R., Wolowska, J. & O’Brien, P. (2009). Inorg. Chim. Acta, 362, 3993–4001.
  13. Ouari, K., Bendia, S., Merzougui, M. & Bailly, C. (2015b). Acta Cryst. E71, o51–o52. [DOI] [PMC free article] [PubMed]
  14. Ouari, K., Bendia, S., Weiss, J. & Bailly, C. (2015a). Spectrochim. Acta Part A, 135, 624–631. [DOI] [PubMed]
  15. Ouari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831–836.
  16. Panneerselvam, P., Rather, B. A., Ravi Sankar Reddy, D. & Ramesh Kumar, N. (2009). Eur. J. Med. Chem. 44, 2328–2333. [DOI] [PubMed]
  17. Popović, Z., Roje, V., Pavlović, G., Matković-Čalogović, D. & Giester, G. (2001). J. Mol. Struct. 597, 39–47.
  18. Rayati, S. & Abdolalian, P. (2013). Appl. Catal. A, 456, 240–248.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  21. Taha, Z. A., Ajlouni, A. M. & Al Momani, W. (2012). J. Lumin. 132, 2832–2841.
  22. Temel, E., Ağar, E. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1131. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015007938/mw2131sup1.cif

e-71-0o351-sup1.cif (551KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007938/mw2131Isup2.hkl

e-71-0o351-Isup2.hkl (179.7KB, hkl)

. DOI: 10.1107/S2056989015007938/mw2131fig1.tif

The title compound with atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

c . DOI: 10.1107/S2056989015007938/mw2131fig2.tif

Crystal packing of the title compound viewed along the c axis.

CCDC reference: 1032833

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES