Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 30;71(Pt 5):o364–o365. doi: 10.1107/S205698901500804X

Crystal structure of 2-chloro-3-(di­meth­oxy­meth­yl)-6-meth­oxy­quinoline

Nanjappa Chandrika a, Tholappanavara H Suresha Kumara b, Jerry P Jasinski c,*, Sean P Millikan c, Hemmige S Yathirajan d, Christopher Glidewell e
PMCID: PMC4420130  PMID: 25995951

Abstract

The title compound, C13H14ClNO3, crystallizes with Z′ = 2 in the space group Pca21, but a search for possible additional crystallographic symmetry found none. However, the crystal structure exhibits pseudosymmetry as the two independent mol­ecules are related by an approximate but non-crystallographic inversion located close to (0.38, 0.26, 1/2) in the selected asymmetric unit, and the structure exhibits partial inversion twinning. The approximate inversion relationship between the two mol­ecules in the selected asymmetric unit is clearly shown by comparison of the relevant torsion angle in the two mol­ecules; the corresponding torsion angles have similar, although not identical magnitudes but with opposite signs. The mean planes of the quinoline rings in the two independent mol­ecules are almost parallel, with a dihedral angle of only 0.16 (3)° between them, and the mutual orientation of these rings permits significant π–π stacking inter­actions between them [centroid–centroid distances = 3.7579 (15) and 3.7923 (15) Å]. In addition, the bimolecular aggregates which are related by translation along [010] are linked by a further π–π stacking inter­action [centroid–centroid distance = 3.7898 (15) Å], so forming a π-stacked chain running parallel to [010]. However, there are no C—H⋯N hydrogen bonds in the structure nor, despite the number of independent aromatic rings, are there any C—H⋯π hydrogen bonds; hence there are no direction-specific inter­actions between adjacent π-stacked chains.

Keywords: crystal structure, quinolone, pseudosymmetry, twinning, π–π stacking inter­actions

Related literature  

For structures of substituted 2-chloro­quinolines, see Insuasty et al. (2006); Hathwar et al. (2010); Anuradha et al. (2013a ,b ).graphic file with name e-71-0o364-scheme1.jpg

Experimental  

Crystal data  

  • C13H14ClNO3

  • M r = 267.70

  • Orthorhombic, Inline graphic

  • a = 27.1156 (9) Å

  • b = 7.1401 (3) Å

  • c = 13.0804 (5) Å

  • V = 2532.47 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 K

  • 0.48 × 0.32 × 0.22 mm

Data collection  

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) T min = 0.808, T max = 0.936

  • 29727 measured reflections

  • 5975 independent reflections

  • 5204 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.097

  • S = 1.08

  • 5975 reflections

  • 331 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983) x determined using 1610 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: 0.43 (3)

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901500804X/hg5440sup1.cif

e-71-0o364-sup1.cif (994.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500804X/hg5440Isup2.hkl

e-71-0o364-Isup2.hkl (327.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698901500804X/hg5440Isup3.cml

. DOI: 10.1107/S205698901500804X/hg5440fig1.tif

The two independent mol­ecules in the title compound showing the atom-labelling scheme. Displacement ellipsoids are shown at the 30% probability level.

. DOI: 10.1107/S205698901500804X/hg5440fig2.tif

The two mol­ecules in the selected asymmetric unit, viewed normal to the planes of the quinolone units, showing the ring overlap which leads to a π..π sktacking inter­action. For the sake of clarity, the H atoms have been omitted.

. DOI: 10.1107/S205698901500804X/hg5440fig3.tif

A stereoview of part of the crystal structure of the title compound showing the formation of a π-stacked chain parallel to [010]. For the sake of clarity, the H atoms have been omitted.

CCDC reference: 1061227

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected torsion angles ().

C12C13C13AO131 69.4(3)
C12C13C13AO132 165.7(2)
C13C13AO131C131 57.4(3)
C13C13AO132C132 170.6(2)
C22C23C23AO231 73.3(3)
C22C23C23AO232 162.3(2)
C23C23AO231C231 58.2(3)
C23C23AO232C232 170.3(2)

Acknowledgments

NC thanks Jain University for research facilities and JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

S1. Structural commentary

It is convenient to refer to the molecules containing atoms N11 and N21 as molecules of types 1 and 2 respectively. Within the selected asymmetric unit (Fig. 1), the mean planes of the heterocyclic ring of the type 1 molecule and the carbocyclic ring of the type 2 molecule make a dihedral angle of 2.84 (12) °; the ring centroid separation is 3.7579 (15) Å, and the shortest perpendicular distance for the centroid of one ring to the plane of the other is 3.3998 (10) Å, with a ring-centroid offset of ca 1.60 Å (Fig. 2). For contact between the carbocylic ring in the type 1 molecule and the heterocyclic ring of the type 2 molecule, the corresponding values are 2.63 (12)°, 3.7923 (15) Å, 3.3993 (11) Å and ca 1.68 Å (Fig. 2). In addition, the mean planes of the carbocyclic ring in the type 1 molecule at (x, y, z) and the type 2 molecule at (x, -1 + y, z) make a dihedral angle of only 0.12 (12)°: the ring-centroid separation is 3.7898 (15) Å, the inter­planar spacing is 3.5924 (10) Å, and the ring-centroid offset is ca 1.207 Å, leading to the formation of a π-stacked chain of alternating type 1 and type 2 molecules running parallel to the [010] direction (Fig. 3).

S2. Synthesis and crystallization

Sodium cyano­trohydridoborate (963.9 mg, 15.1 mmol was added in a single portion to a solution of (E)-1-((2-chloro-6-meth­oxy­quinolin-3-yl)methyl­ene)-2- (3-fluoro­phenyl)­hydrazine (500 mg, 1.5 mmol) in methanol (20 cm3) and the mixture was then stirred for 30 min. The solution was cooled to 273 K and hydrogen chloride solution (16 mol dm-3, 4 cm 3) was added dropwise during 10 min. Crushed ice was then added followed by the addition of ice-cold water, and the aqueous mixture was exhaustively extracted with ethyl acetate; the combined extracts were dried over anhydrous sodium sulfate, and the organic solvent was removed under educed pressure. The resulting crude product was purified by chromatography on silica gel using a mixture of hexane and ethyl acetate (19:1, v/v). Crystals of the title compound suitable for single-crystal X-ray diffraction were obtained by slow evaporation, at ambient temperature and in the presence of air, of a solution in hexane-ethyl acetate (1:1, v/v).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions with C—H distances 0.95 Å (aryl and hetero­aryl) 0.98 Å (methyl) or 1.00 Å (aliphatic CH), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt and 1.2 for all other H atoms. The value of the Flack x parameter (Flack, 1983) calculated using 1610 quotients of type [(I+)-(I–)]/[(I+)+(I–)] (Parsons et al., 2013), x = 0.0.43 (3), indicated partial inversion twinning: the conventional calculation using the TWIN and BASF commands in SHELXL gave a less precise value x = 0.49 (8).

Figures

Fig. 1.

Fig. 1.

The two independent molecules in the title compound showing the atom-labelling scheme. Displacement ellipsoids are shown at the 30% probability level.

Fig. 2.

Fig. 2.

The two molecules in the selected asymmetric unit, viewed normal to the planes of the quinolone units, showing the ring overlap which leads to a π..π sktacking interaction. For the sake of clarity, the H atoms have been omitted.

Fig. 3.

Fig. 3.

A stereoview of part of the crystal structure of the title compound showing the formation of a π-stacked chain parallel to [010]. For the sake of clarity, the H atoms have been omitted.

Crystal data

C13H14ClNO3 Dx = 1.404 Mg m3
Mr = 267.70 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 7046 reflections
a = 27.1156 (9) Å θ = 3.0–32.9°
b = 7.1401 (3) Å µ = 0.30 mm1
c = 13.0804 (5) Å T = 173 K
V = 2532.47 (17) Å3 Block, colourless
Z = 8 0.48 × 0.32 × 0.22 mm
F(000) = 1120

Data collection

Agilent Eos Gemini diffractometer 5204 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.037
ω scans θmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) h = −38→38
Tmin = 0.808, Tmax = 0.936 k = −10→10
29727 measured reflections l = −18→11
5975 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.040P)2 + 0.6971P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.25 e Å3
5975 reflections Δρmin = −0.22 e Å3
331 parameters Absolute structure: Flack (1983) x determined using 1610 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.43 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N11 0.39039 (8) 0.0376 (3) 0.29016 (19) 0.0292 (5)
C12 0.43758 (10) 0.0736 (4) 0.2853 (2) 0.0288 (6)
Cl12 0.46105 (3) 0.09675 (13) 0.16196 (6) 0.0454 (2)
C13 0.46977 (9) 0.0934 (3) 0.3699 (2) 0.0251 (5)
C14 0.44942 (9) 0.0669 (3) 0.4645 (2) 0.0231 (5)
H14 0.4696 0.0759 0.5237 0.028*
C14A 0.39862 (9) 0.0263 (3) 0.4750 (2) 0.0219 (5)
C15 0.37608 (9) 0.0021 (3) 0.5722 (2) 0.0233 (5)
H15 0.3953 0.0050 0.6330 0.028*
C16 0.32597 (9) −0.0257 (4) 0.5764 (2) 0.0258 (5)
C17 0.29751 (9) −0.0318 (4) 0.4865 (3) 0.0319 (6)
H17 0.2629 −0.0496 0.4913 0.038*
C18 0.31884 (10) −0.0127 (4) 0.3927 (3) 0.0305 (6)
H18 0.2992 −0.0191 0.3326 0.037*
C18A 0.37043 (9) 0.0167 (4) 0.3853 (2) 0.0249 (5)
C13A 0.52323 (9) 0.1523 (4) 0.3548 (2) 0.0281 (5)
H13A 0.5234 0.2665 0.3106 0.034*
O131 0.55262 (7) 0.0153 (3) 0.30701 (18) 0.0321 (5)
C131 0.55388 (11) −0.1605 (4) 0.3590 (3) 0.0429 (8)
H13B 0.5794 −0.2402 0.3284 0.064*
H13C 0.5217 −0.2221 0.3527 0.064*
H13D 0.5614 −0.1400 0.4314 0.064*
O132 0.54123 (7) 0.2034 (3) 0.45089 (17) 0.0352 (5)
C132 0.58878 (11) 0.2904 (6) 0.4464 (3) 0.0505 (9)
H13E 0.5886 0.3884 0.3939 0.076*
H13F 0.6137 0.1963 0.4292 0.076*
H13G 0.5966 0.3462 0.5129 0.076*
O161 0.29952 (6) −0.0473 (3) 0.66505 (19) 0.0350 (5)
C161 0.32646 (11) −0.0603 (4) 0.7579 (2) 0.0359 (6)
H16A 0.3514 −0.1591 0.7520 0.054*
H16B 0.3039 −0.0902 0.8140 0.054*
H16C 0.3427 0.0596 0.7718 0.054*
N21 0.36627 (8) 0.4764 (3) 0.7052 (2) 0.0283 (5)
C22 0.31896 (9) 0.4430 (4) 0.7132 (2) 0.0266 (5)
Cl22 0.29765 (3) 0.42155 (12) 0.83834 (6) 0.04137 (18)
C23 0.28587 (9) 0.4207 (3) 0.6311 (2) 0.0244 (5)
C24 0.30472 (9) 0.4451 (4) 0.5349 (2) 0.0232 (5)
H24 0.2836 0.4347 0.4772 0.028*
C24A 0.35540 (9) 0.4858 (3) 0.5202 (2) 0.0210 (5)
C25 0.37671 (9) 0.5086 (3) 0.4222 (2) 0.0230 (5)
H25 0.3567 0.5039 0.3626 0.028*
C26 0.42667 (9) 0.5376 (4) 0.4143 (2) 0.0248 (5)
C27 0.45641 (9) 0.5448 (4) 0.5036 (3) 0.0284 (6)
H27 0.4910 0.5632 0.4970 0.034*
C28 0.43643 (9) 0.5259 (4) 0.5976 (2) 0.0293 (6)
H28 0.4569 0.5329 0.6564 0.035*
C28A 0.38520 (9) 0.4957 (3) 0.6092 (2) 0.0235 (5)
C23A 0.23260 (9) 0.3619 (4) 0.6500 (2) 0.0272 (5)
H23A 0.2329 0.2542 0.6989 0.033*
O231 0.20304 (7) 0.5042 (3) 0.6925 (2) 0.0374 (5)
C231 0.20056 (11) 0.6697 (4) 0.6326 (3) 0.0458 (9)
H23B 0.1889 0.6385 0.5638 0.069*
H23C 0.2334 0.7264 0.6282 0.069*
H23D 0.1777 0.7584 0.6645 0.069*
O232 0.21399 (6) 0.2972 (3) 0.55662 (16) 0.0311 (4)
C232 0.16713 (11) 0.2090 (5) 0.5660 (3) 0.0424 (8)
H23E 0.1599 0.1387 0.5034 0.064*
H23F 0.1417 0.3044 0.5767 0.064*
H23G 0.1676 0.1231 0.6244 0.064*
O261 0.45217 (6) 0.5572 (3) 0.32579 (18) 0.0332 (4)
C261 0.42426 (10) 0.5695 (4) 0.2333 (3) 0.0359 (7)
H26A 0.4468 0.5846 0.1752 0.054*
H26B 0.4020 0.6775 0.2368 0.054*
H26C 0.4049 0.4548 0.2243 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0278 (10) 0.0365 (11) 0.0233 (13) 0.0061 (9) −0.0032 (9) −0.0022 (10)
C12 0.0317 (12) 0.0341 (14) 0.0206 (14) 0.0088 (10) 0.0021 (11) 0.0011 (11)
Cl12 0.0410 (4) 0.0734 (5) 0.0217 (3) 0.0135 (4) 0.0051 (3) 0.0014 (4)
C13 0.0240 (11) 0.0266 (12) 0.0248 (13) 0.0051 (9) 0.0023 (10) 0.0012 (10)
C14 0.0211 (11) 0.0261 (12) 0.0221 (13) 0.0026 (9) −0.0004 (9) 0.0015 (10)
C14A 0.0218 (11) 0.0192 (9) 0.0248 (14) 0.0031 (8) −0.0001 (10) 0.0008 (10)
C15 0.0225 (10) 0.0247 (12) 0.0226 (14) −0.0012 (9) −0.0012 (9) 0.0029 (9)
C16 0.0256 (11) 0.0237 (11) 0.0281 (15) 0.0001 (9) 0.0020 (10) 0.0027 (10)
C17 0.0213 (11) 0.0358 (13) 0.0387 (19) −0.0008 (10) −0.0035 (11) 0.0006 (13)
C18 0.0251 (11) 0.0368 (14) 0.0295 (16) 0.0033 (10) −0.0060 (11) −0.0002 (12)
C18A 0.0240 (11) 0.0254 (12) 0.0255 (15) 0.0050 (9) −0.0024 (10) −0.0008 (10)
C13A 0.0265 (11) 0.0343 (12) 0.0235 (14) 0.0002 (10) 0.0065 (10) 0.0029 (11)
O131 0.0277 (8) 0.0383 (11) 0.0302 (13) 0.0026 (7) 0.0101 (8) −0.0003 (8)
C131 0.0310 (14) 0.0372 (15) 0.061 (2) 0.0050 (12) 0.0101 (14) 0.0021 (15)
O132 0.0266 (9) 0.0515 (12) 0.0276 (11) −0.0055 (8) 0.0059 (8) −0.0048 (9)
C132 0.0339 (15) 0.072 (2) 0.046 (2) −0.0184 (15) 0.0083 (14) −0.0148 (18)
O161 0.0236 (8) 0.0496 (11) 0.0318 (13) −0.0054 (8) 0.0028 (8) 0.0062 (11)
C161 0.0329 (14) 0.0461 (16) 0.0286 (16) −0.0009 (12) 0.0025 (12) 0.0056 (13)
N21 0.0260 (10) 0.0350 (12) 0.0237 (12) 0.0051 (9) −0.0022 (9) −0.0026 (10)
C22 0.0287 (12) 0.0329 (13) 0.0181 (13) 0.0054 (10) 0.0008 (10) 0.0005 (10)
Cl22 0.0379 (3) 0.0660 (5) 0.0201 (3) 0.0034 (3) 0.0030 (3) 0.0008 (4)
C23 0.0248 (11) 0.0255 (11) 0.0227 (13) 0.0003 (9) 0.0008 (10) −0.0002 (9)
C24 0.0216 (10) 0.0261 (11) 0.0219 (13) 0.0007 (9) −0.0029 (10) 0.0014 (10)
C24A 0.0224 (10) 0.0175 (10) 0.0231 (13) 0.0016 (8) −0.0003 (10) −0.0010 (9)
C25 0.0227 (11) 0.0233 (12) 0.0230 (14) −0.0014 (8) −0.0013 (10) 0.0017 (9)
C26 0.0236 (11) 0.0232 (11) 0.0277 (15) −0.0008 (9) 0.0007 (10) 0.0017 (11)
C27 0.0204 (10) 0.0311 (12) 0.0337 (16) −0.0019 (9) −0.0024 (10) −0.0015 (12)
C28 0.0220 (11) 0.0349 (13) 0.0310 (16) −0.0011 (10) −0.0059 (11) −0.0043 (12)
C28A 0.0238 (11) 0.0237 (11) 0.0231 (14) 0.0037 (9) −0.0029 (10) −0.0030 (10)
C23A 0.0261 (11) 0.0340 (12) 0.0214 (13) −0.0018 (9) 0.0021 (10) 0.0036 (11)
O231 0.0294 (9) 0.0439 (12) 0.0387 (14) 0.0014 (8) 0.0089 (9) −0.0039 (10)
C231 0.0265 (13) 0.0388 (15) 0.072 (3) 0.0013 (11) 0.0056 (15) 0.0013 (16)
O232 0.0241 (8) 0.0432 (11) 0.0260 (11) −0.0084 (8) 0.0022 (7) 0.0010 (8)
C232 0.0353 (15) 0.0542 (18) 0.0378 (18) −0.0194 (13) 0.0039 (13) −0.0012 (14)
O261 0.0236 (8) 0.0471 (11) 0.0288 (12) −0.0042 (8) 0.0034 (8) 0.0046 (10)
C261 0.0320 (14) 0.0484 (17) 0.0275 (16) 0.0008 (12) 0.0011 (11) 0.0028 (14)

Geometric parameters (Å, º)

N11—C12 1.307 (3) N21—C22 1.309 (3)
N11—C18A 1.365 (4) N21—C28A 1.363 (4)
C12—C13 1.417 (4) C22—C23 1.408 (4)
C12—Cl12 1.742 (3) C22—Cl22 1.743 (3)
C13—C14 1.368 (4) C23—C24 1.370 (4)
C13—C13A 1.522 (3) C23—C23A 1.524 (3)
C14—C14A 1.414 (3) C24—C24A 1.417 (3)
C14—H14 0.9500 C24—H24 0.9500
C14A—C18A 1.402 (4) C24A—C25 1.416 (4)
C14A—C15 1.422 (4) C24A—C28A 1.419 (4)
C15—C16 1.374 (3) C25—C26 1.374 (3)
C15—H15 0.9500 C25—H25 0.9500
C16—O161 1.372 (4) C26—O261 1.355 (3)
C16—C17 1.407 (4) C26—C27 1.420 (4)
C17—C18 1.364 (5) C27—C28 1.351 (4)
C17—H17 0.9500 C27—H27 0.9500
C18—C18A 1.418 (3) C28—C28A 1.414 (3)
C18—H18 0.9500 C28—H28 0.9500
C13A—O132 1.396 (3) C23A—O232 1.400 (3)
C13A—O131 1.408 (3) C23A—O231 1.408 (3)
C13A—H13A 1.0000 C23A—H23A 1.0000
O131—C131 1.428 (4) O231—C231 1.419 (4)
C131—H13B 0.9800 C231—H23B 0.9800
C131—H13C 0.9800 C231—H23C 0.9800
C131—H13D 0.9800 C231—H23D 0.9800
O132—C132 1.433 (3) O232—C232 1.424 (3)
C132—H13E 0.9800 C232—H23E 0.9800
C132—H13F 0.9800 C232—H23F 0.9800
C132—H13G 0.9800 C232—H23G 0.9800
O161—C161 1.420 (4) O261—C261 1.430 (4)
C161—H16A 0.9800 C261—H26A 0.9800
C161—H16B 0.9800 C261—H26B 0.9800
C161—H16C 0.9800 C261—H26C 0.9800
C12—N11—C18A 117.0 (2) C22—N21—C28A 117.4 (2)
N11—C12—C13 125.8 (3) N21—C22—C23 125.7 (3)
N11—C12—Cl12 114.9 (2) N21—C22—Cl22 114.6 (2)
C13—C12—Cl12 119.3 (2) C23—C22—Cl22 119.7 (2)
C14—C13—C12 116.4 (2) C24—C23—C22 116.6 (2)
C14—C13—C13A 122.7 (2) C24—C23—C23A 122.5 (2)
C12—C13—C13A 120.9 (3) C22—C23—C23A 120.7 (2)
C13—C14—C14A 120.6 (2) C23—C24—C24A 120.8 (2)
C13—C14—H14 119.7 C23—C24—H24 119.6
C14A—C14—H14 119.7 C24A—C24—H24 119.6
C18A—C14A—C14 117.4 (3) C25—C24A—C24 122.8 (2)
C18A—C14A—C15 120.5 (2) C25—C24A—C28A 120.3 (2)
C14—C14A—C15 122.0 (2) C24—C24A—C28A 116.8 (3)
C16—C15—C14A 118.6 (3) C26—C25—C24A 119.2 (3)
C16—C15—H15 120.7 C26—C25—H25 120.4
C14A—C15—H15 120.7 C24A—C25—H25 120.4
O161—C16—C15 124.5 (3) O261—C26—C25 125.6 (3)
O161—C16—C17 114.6 (2) O261—C26—C27 114.1 (2)
C15—C16—C17 120.9 (3) C25—C26—C27 120.2 (3)
C18—C17—C16 121.1 (2) C28—C27—C26 121.2 (2)
C18—C17—H17 119.5 C28—C27—H27 119.4
C16—C17—H17 119.5 C26—C27—H27 119.4
C17—C18—C18A 119.7 (3) C27—C28—C28A 120.4 (3)
C17—C18—H18 120.2 C27—C28—H28 119.8
C18A—C18—H18 120.2 C28A—C28—H28 119.8
N11—C18A—C14A 122.8 (2) N21—C28A—C28 118.9 (2)
N11—C18A—C18 118.0 (3) N21—C28A—C24A 122.4 (2)
C14A—C18A—C18 119.2 (3) C28—C28A—C24A 118.6 (3)
O132—C13A—O131 112.5 (2) O232—C23A—O231 112.2 (2)
O132—C13A—C13 106.8 (2) O232—C23A—C23 106.9 (2)
O131—C13A—C13 113.9 (2) O231—C23A—C23 113.9 (2)
O132—C13A—H13A 107.8 O232—C23A—H23A 107.9
O131—C13A—H13A 107.8 O231—C23A—H23A 107.9
C13—C13A—H13A 107.8 C23—C23A—H23A 107.9
C13A—O131—C131 114.4 (2) C23A—O231—C231 114.2 (3)
O131—C131—H13B 109.5 O231—C231—H23B 109.5
O131—C131—H13C 109.5 O231—C231—H23C 109.5
H13B—C131—H13C 109.5 H23B—C231—H23C 109.5
O131—C131—H13D 109.5 O231—C231—H23D 109.5
H13B—C131—H13D 109.5 H23B—C231—H23D 109.5
H13C—C131—H13D 109.5 H23C—C231—H23D 109.5
C13A—O132—C132 113.0 (2) C23A—O232—C232 113.1 (2)
O132—C132—H13E 109.5 O232—C232—H23E 109.5
O132—C132—H13F 109.5 O232—C232—H23F 109.5
H13E—C132—H13F 109.5 H23E—C232—H23F 109.5
O132—C132—H13G 109.5 O232—C232—H23G 109.5
H13E—C132—H13G 109.5 H23E—C232—H23G 109.5
H13F—C132—H13G 109.5 H23F—C232—H23G 109.5
C16—O161—C161 117.47 (19) C26—O261—C261 117.32 (19)
O161—C161—H16A 109.5 O261—C261—H26A 109.5
O161—C161—H16B 109.5 O261—C261—H26B 109.5
H16A—C161—H16B 109.5 H26A—C261—H26B 109.5
O161—C161—H16C 109.5 O261—C261—H26C 109.5
H16A—C161—H16C 109.5 H26A—C261—H26C 109.5
H16B—C161—H16C 109.5 H26B—C261—H26C 109.5
C18A—N11—C12—C13 −0.3 (4) C28A—N21—C22—C23 1.6 (4)
C18A—N11—C12—Cl12 179.47 (19) C28A—N21—C22—Cl22 −179.65 (19)
N11—C12—C13—C14 2.0 (4) N21—C22—C23—C24 −3.3 (4)
Cl12—C12—C13—C14 −177.72 (19) Cl22—C22—C23—C24 178.01 (19)
N11—C12—C13—C13A −174.6 (3) N21—C22—C23—C23A 173.5 (3)
Cl12—C12—C13—C13A 5.7 (3) Cl22—C22—C23—C23A −5.2 (3)
C12—C13—C14—C14A −1.4 (3) C22—C23—C24—C24A 1.6 (4)
C13A—C13—C14—C14A 175.1 (2) C23A—C23—C24—C24A −175.1 (2)
C13—C14—C14A—C18A −0.7 (3) C23—C24—C24A—C25 178.7 (2)
C13—C14—C14A—C15 −178.6 (2) C23—C24—C24A—C28A 1.3 (4)
C18A—C14A—C15—C16 −1.8 (4) C24—C24A—C25—C26 −176.4 (2)
C14—C14A—C15—C16 176.1 (2) C28A—C24A—C25—C26 1.0 (3)
C14A—C15—C16—O161 −178.7 (2) C24A—C25—C26—O261 178.4 (2)
C14A—C15—C16—C17 0.6 (4) C24A—C25—C26—C27 −0.1 (4)
O161—C16—C17—C18 −179.9 (3) O261—C26—C27—C28 −179.5 (3)
C15—C16—C17—C18 0.8 (4) C25—C26—C27—C28 −0.8 (4)
C16—C17—C18—C18A −1.0 (4) C26—C27—C28—C28A 0.9 (4)
C12—N11—C18A—C14A −2.1 (4) C22—N21—C28A—C28 −178.0 (2)
C12—N11—C18A—C18 176.8 (2) C22—N21—C28A—C24A 1.7 (4)
C14—C14A—C18A—N11 2.6 (4) C27—C28—C28A—N21 179.7 (3)
C15—C14A—C18A—N11 −179.5 (2) C27—C28—C28A—C24A 0.0 (4)
C14—C14A—C18A—C18 −176.3 (2) C25—C24A—C28A—N21 179.4 (2)
C15—C14A—C18A—C18 1.6 (4) C24—C24A—C28A—N21 −3.1 (3)
C17—C18—C18A—N11 −179.2 (3) C25—C24A—C28A—C28 −0.9 (3)
C17—C18—C18A—C14A −0.2 (4) C24—C24A—C28A—C28 176.6 (2)
C14—C13—C13A—O132 −10.6 (3) C24—C23—C23A—O232 14.3 (3)
C12—C13—C13A—O131 −69.4 (3) C22—C23—C23A—O231 73.3 (3)
C12—C13—C13A—O132 165.7 (2) C22—C23—C23A—O232 −162.3 (2)
C14—C13—C13A—O131 114.2 (3) C24—C23—C23A—O231 −110.1 (3)
O132—C13A—O131—C131 64.3 (3) O232—C23A—O231—C231 −63.4 (3)
C13—C13A—O131—C131 −57.4 (3) C23—C23A—O231—C231 58.2 (3)
O131—C13A—O132—C132 63.7 (3) O231—C23A—O232—C232 −64.2 (3)
C13—C13A—O132—C132 −170.6 (2) C23—C23A—O232—C232 170.3 (2)
C15—C16—O161—C161 −6.5 (4) C25—C26—O261—C261 7.3 (4)
C17—C16—O161—C161 174.2 (3) C27—C26—O261—C261 −174.2 (2)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5440).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.
  2. Anuradha, T., Srinivasan, J., Seshadri, P. R. & Bakthadoss, M. (2013a). Acta Cryst. E69, o779. [DOI] [PMC free article] [PubMed]
  3. Anuradha, T., Srinivasan, J., Seshadri, P. R. & Bakthadoss, M. (2013b). Acta Cryst. E69, o990. [DOI] [PMC free article] [PubMed]
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Guru Row, T. N. (2010). J. Chem. Sci. 122, 677–685.
  6. Insuasty, B., Torres, H., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o39–o41. [DOI] [PubMed]
  7. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901500804X/hg5440sup1.cif

e-71-0o364-sup1.cif (994.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500804X/hg5440Isup2.hkl

e-71-0o364-Isup2.hkl (327.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698901500804X/hg5440Isup3.cml

. DOI: 10.1107/S205698901500804X/hg5440fig1.tif

The two independent mol­ecules in the title compound showing the atom-labelling scheme. Displacement ellipsoids are shown at the 30% probability level.

. DOI: 10.1107/S205698901500804X/hg5440fig2.tif

The two mol­ecules in the selected asymmetric unit, viewed normal to the planes of the quinolone units, showing the ring overlap which leads to a π..π sktacking inter­action. For the sake of clarity, the H atoms have been omitted.

. DOI: 10.1107/S205698901500804X/hg5440fig3.tif

A stereoview of part of the crystal structure of the title compound showing the formation of a π-stacked chain parallel to [010]. For the sake of clarity, the H atoms have been omitted.

CCDC reference: 1061227

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES