Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 11;71(Pt 5):476–478. doi: 10.1107/S2056989015006787

Crystal structure of 2,4-di­amino-6-oxo-3,6-di­hydro­pyrimidin-1-ium p-toluene­sulfonate

Krishnasamy Mamallan a, Sadasivam Sharmila Tagore a, Sundaramoorthy Gomathi a, Velusamy Sethuraman a,*
PMCID: PMC4420137  PMID: 25995859

In the crystal of the title salt, the 2,6-di­amino-4-oxo-1,3-di­hydro­pyrimidin-1-ium cations and the p-toluene­sulfonate anions are linked by a series of N—H⋯O hydrogen bonds, forming tunnel-like polymer chains propagating along [010].

Keywords: crystal structure, di­amino­pyrimidines, tri­amino­pyrimidines, p-toluene­sulfonate, hydrogen bonding, N—H⋯O hydrogen bonds, π–π stacking inter­actions

Abstract

In the title salt, C4H7N4O+·C7H7O3S, the 2,6-di­amino-4-oxo-1,3-di­hydro­pyrimidin-1-ium cation inter­acts with the sulfonate group of the p-toluene­sulfonate anion via a pair of N—H⋯O hydrogen bonds, forming a hetero-synthon R 2 2(8) that mimics the role of a carboxyl­ate. The self-assembled cations form a homo-synthon R 2 1(6) motif which is further linked with the sulfonate anion via N—H⋯O hydrogen bonds to generate an R 3 2(10) ring motif. The three motifs are fused together and extended as supra­molecular ribbons along the b-axis direction. Adjacent ribbons are further linked via N—H⋯O hydrogen bonds to form an annulus, with an R 4 4(20) ring motif, resulting in a tunnel-like arrangement propagating along [010]. There are slipped parallel π–π stacking inter­actions [inter-centroid distance = 3.6539 (7) Å], between the tunnel-like polymer chains, forming slabs parallel to (100).

Chemical context  

Di- and tri-amino­pyrimidines show various biological and pharmacological properties like tyrosine kinase (Thomas, 1995a ,b ), di­hydro­folate reductase inhibitors (Ayer, 1991) and are used as anti­viral and anti­protozoan agents. 2,6-Di­amino-4-hy­droxy pyrimidine (DAHP), an inhibitor of guanosine triphosphate cyclo­hydro­lase I, blocks the synthesis of tetra­hydro­biopterin which is a known cofactor of inducible nitric oxide synthesis (iNOS) (Bogdan et al., 1995). The study of hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes are of current inter­est (Gomathi & Mu­thiah, 2011; Wang, 2006). The present report deals with the supra­molecular inter­actions exhibited by the title salt.graphic file with name e-71-00476-scheme1.jpg

Structural commentary  

The asymmetric unit of the title salt contains one 2,6-di­amino-4-oxo-1,3-di­hydro­pyrimidin-1-ium cation and one p-toluene sulfonate anion (Fig. 1). The cation is protonated at the N3 position, which is reflected by the slight increase in the C2—N3—C4 bond angle to 123.2 (1)°. The dihedral angle between the cation and anion ring mean planes is 54.04 (6)°.

Figure 1.

Figure 1

A view of the mol­ecular structure of the title mol­ecular salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The three C—S—O angles, C7—S1—O3 [106.83 (7)°], C7—S1—O2 [105.89 (7)°] and C7—S1—O4 [106.91 (7)°], and the O—S—O angles, O3—S1—O2 [110.84 (7)°], O2—S1—O4 [111.93 (7)°] and O3—S1—O4 [113.91 (8)°], indicate that the geometry of the sulfonate group is slightly distorted from an ideal tetra­hedral geometry.

Supra­molecular features  

The primary inter­action between the cation and anion takes place via a pair of N—H⋯O hydrogen bonds, forming a robust six-membered hetero-synthon, Inline graphic(8), and here the sulfonate group mimics the role of a carboxyl­ate. This motif links the protonated ring N atom, N3, and the 2-amino N atom, N2, of the cation with the sulfonate atoms O2 and O3 of the anion. Adjacent Inline graphic(8) ring motifs are connected via an N—H⋯O hydrogen bond by linking the 2-amino N atom, N2 with atom O3i [symmetry code: x, y + 1, z]. The cation undergoes self-association via a pair of bifurcated N—H⋯(O,O) hydrogen bonds, forming a homo-synthon, Inline graphic(6). This motif involves ring N1 and the 6-amino N atoms and carbonyl atom O1i of the cation (Table 1). The self-assembled cations extend as a supra­molecular chain propagating along [010]. The homo- and hetero-synthons [Inline graphic(8) and Inline graphic(6)] are linked by an Inline graphic(10) ring motif. The three motifs are fused together continuously, forming supra­molecular ribbons along [010]. Two such ribbons in adjacent planes are connected via N—H⋯O hydrogen bonds by linking the 6-amino N of the cation and the sulfonate atom O4ii [symmetry code: −x + 1, −y + 1, −z + 1] of the anion, generating an annulus (Su et al., 2007) with an Inline graphic(20) graph-set motif (Fig. 2). This motif extends in the direction of the supra­molecular ribbons and generates a tunnel-like architecture along the b-axis direction (Figs. 2 and 3).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1O1i 0.86 1.86 2.6515(14) 152
N2H2AO3 0.86 1.95 2.7935(17) 166
N2H2BO2i 0.86 2.01 2.8669(16) 175
N3H3O2 0.86 1.92 2.7689(14) 169
N6H6AO4ii 0.86 2.25 2.9498(18) 139
N6H6BO1i 0.86 2.08 2.8201(15) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view of the supra­molecular tunnel-like architecture built by N—H⋯O hydrogen bonds [dashed lines; see Table 1 for details; symmetry codes: (i) x, y + 1, z; (ii) −x + 1, −y + 1, −z + 1], in the crystal structure of the title mol­ecular salt.

Figure 3.

Figure 3

A view along the b axis of the crystal packing of the title mol­ecular salt. Hydrogen bonds (see Table 1 for details) and π–π inter­actions are shown as dashed lines.

Adjacent tunnels inter­act by off-set aromatic π–π stacking inter­actions which are observed between symmetry-related pyrimidine rings of the cations with a centroid–centroid distance CgCg iii of 3.6539 (7) Å [Cg is the centroid of ring N1/C2/N3/C4–C6; the dihedral angle between the ring planes = 1.86 (6)°; perpendicular separation = 3.2501 (5) Å; symmetry code: (iii) −x + 1, y, −z + Inline graphic]. These inter­actions result in the formation of slabs parallel to (100); as shown in Fig. 3.

Database survey  

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) revealed the presence of over 700 compounds involving p-toluene sulfonate but only three hits for the 2,6-di­amino-4-oxo-1,3-di­hydro­pyrimidin-1-ium cation. These include the sulfate monohydrate (ACEYUD; Mu­thiah et al., 2004), the di(methane­sulfan­yl)amide (ESAQOE; Wijaya et al., 2004) and the chloride dihydrate (SUZFOJ; Suleiman Gwaram et al., 2010). In ACEYUD the cation is protonated at the N atom adjacent to the carbonyl group, as in the title compound, while in compounds ESAQOE and SUZFOJ it is the N atom para to the carbonyl group that is protonated. Otherwise, the bond distances in these three compounds are very similar and close to those observed for the title compound.

Synthesis and crystallization  

A hot methano­lic solution (20 ml) of 2,6-di­amino-4-hy­droxy pyrimidine (31.5 mg, Aldrich) and p-toluene sulfonic acid (43 mg, Loba chemie) was warmed at 323 K for 30 min over a water bath. The mixture was cooled slowly and kept at room temperature and after three weeks light-yellow needle-shaped crystals were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å, C—H = 0.93–0.96 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(N,C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C4H7N4O+C7H7O3S
M r 298.33
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c () 30.8628(7), 6.5559(2), 13.1565(3)
() 96.428(1)
V (3) 2645.27(12)
Z 8
Radiation type Mo K
(mm1) 0.27
Crystal size (mm) 0.30 0.20 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.925, 0.949
No. of measured, independent and observed [I > 2(I)] reflections 14972, 3580, 2986
R int 0.022
(sin /)max (1) 0.687
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.037, 0.109, 1.06
No. of reflections 3580
No. of parameters 182
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.31, 0.25

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015006787/su5107sup1.cif

e-71-00476-sup1.cif (26.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015006787/su5107Isup2.hkl

e-71-00476-Isup2.hkl (172.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015006787/su5107Isup3.cml

CCDC reference: 1057933

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Babu Varghese and the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Chennai, Tamil Nadu, India, for the data collection.

supplementary crystallographic information

Crystal data

C4H7N4O+·C7H7O3S F(000) = 1248
Mr = 298.33 Dx = 1.498 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3580 reflections
a = 30.8628 (7) Å θ = 2.7–29.3°
b = 6.5559 (2) Å µ = 0.27 mm1
c = 13.1565 (3) Å T = 296 K
β = 96.428 (1)° Prism, colourless
V = 2645.27 (12) Å3 0.30 × 0.20 × 0.20 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer 3580 independent reflections
Radiation source: fine-focus sealed tube 2986 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
ω and φ scan θmax = 29.2°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −40→42
Tmin = 0.925, Tmax = 0.949 k = −9→7
14972 measured reflections l = −18→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0552P)2 + 1.4509P] where P = (Fo2 + 2Fc2)/3
3580 reflections (Δ/σ)max = 0.001
182 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.37258 (1) 0.33503 (6) 0.60709 (3) 0.0395 (1)
O2 0.41787 (3) 0.26937 (17) 0.63677 (10) 0.0469 (4)
O3 0.36871 (4) 0.55423 (17) 0.61453 (11) 0.0559 (4)
O4 0.35526 (4) 0.2530 (2) 0.50899 (10) 0.0594 (4)
C7 0.34167 (4) 0.2292 (2) 0.69886 (12) 0.0379 (4)
C8 0.33328 (5) 0.3414 (3) 0.78333 (14) 0.0508 (5)
C9 0.30882 (6) 0.2558 (4) 0.85489 (15) 0.0631 (7)
C10 0.29210 (5) 0.0608 (4) 0.84233 (15) 0.0611 (7)
C11 0.30171 (6) −0.0499 (3) 0.75883 (16) 0.0595 (6)
C12 0.32634 (5) 0.0315 (3) 0.68668 (14) 0.0477 (5)
C13 0.26346 (7) −0.0295 (5) 0.9167 (2) 0.0946 (12)
O1 0.52384 (3) 0.28686 (15) 0.61202 (10) 0.0461 (4)
N1 0.50945 (3) 0.88937 (16) 0.62432 (8) 0.0306 (3)
N2 0.43613 (4) 0.84071 (18) 0.63472 (10) 0.0382 (3)
N3 0.48173 (3) 0.56345 (16) 0.62787 (9) 0.0314 (3)
N6 0.58157 (4) 0.95420 (18) 0.60830 (11) 0.0424 (4)
C2 0.47500 (4) 0.76549 (19) 0.62867 (9) 0.0289 (3)
C4 0.52230 (4) 0.4758 (2) 0.61702 (10) 0.0321 (3)
C5 0.55713 (4) 0.6088 (2) 0.61103 (11) 0.0343 (4)
C6 0.55075 (4) 0.8158 (2) 0.61406 (10) 0.0308 (3)
H8 0.34390 0.47360 0.79230 0.0610*
H9 0.30360 0.33110 0.91220 0.0760*
H11 0.29140 −0.18290 0.75060 0.0710*
H12 0.33250 −0.04600 0.63080 0.0570*
H13A 0.23360 0.00590 0.89590 0.1420*
H13B 0.27210 0.02330 0.98400 0.1420*
H13C 0.26650 −0.17530 0.91740 0.1420*
H1 0.50570 1.01900 0.62810 0.0370*
H2A 0.41430 0.76020 0.63830 0.0460*
H2B 0.43230 0.97070 0.63510 0.0460*
H3 0.46010 0.48390 0.63430 0.0380*
H5 0.58480 0.55720 0.60500 0.0410*
H6A 0.60780 0.91650 0.60220 0.0510*
H6B 0.57530 1.08180 0.61070 0.0510*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0285 (2) 0.0340 (2) 0.0570 (2) −0.0021 (1) 0.0095 (1) −0.0001 (2)
O2 0.0284 (5) 0.0346 (5) 0.0788 (8) −0.0014 (4) 0.0105 (5) 0.0016 (5)
O3 0.0434 (6) 0.0332 (6) 0.0928 (10) 0.0018 (5) 0.0154 (6) 0.0087 (6)
O4 0.0459 (6) 0.0783 (9) 0.0554 (7) −0.0116 (6) 0.0117 (5) −0.0091 (6)
C7 0.0265 (6) 0.0356 (7) 0.0519 (8) −0.0021 (5) 0.0053 (5) 0.0004 (6)
C8 0.0409 (8) 0.0524 (10) 0.0600 (10) −0.0048 (7) 0.0094 (7) −0.0104 (8)
C9 0.0469 (9) 0.0889 (15) 0.0554 (10) −0.0014 (10) 0.0140 (8) −0.0057 (10)
C10 0.0336 (7) 0.0877 (15) 0.0618 (11) −0.0043 (8) 0.0039 (7) 0.0239 (10)
C11 0.0458 (9) 0.0518 (11) 0.0791 (13) −0.0138 (8) −0.0004 (8) 0.0191 (9)
C12 0.0411 (7) 0.0379 (8) 0.0638 (10) −0.0056 (6) 0.0047 (7) −0.0005 (7)
C13 0.0533 (11) 0.149 (3) 0.0824 (15) −0.0176 (14) 0.0114 (10) 0.0509 (16)
O1 0.0415 (5) 0.0209 (5) 0.0767 (8) 0.0010 (4) 0.0104 (5) 0.0001 (5)
N1 0.0338 (5) 0.0190 (5) 0.0395 (6) −0.0006 (4) 0.0066 (4) 0.0008 (4)
N2 0.0333 (5) 0.0271 (6) 0.0552 (7) 0.0018 (4) 0.0092 (5) 0.0027 (5)
N3 0.0307 (5) 0.0221 (5) 0.0417 (6) −0.0022 (4) 0.0061 (4) 0.0018 (4)
N6 0.0353 (6) 0.0269 (6) 0.0665 (8) −0.0041 (5) 0.0126 (6) −0.0005 (5)
C2 0.0332 (6) 0.0244 (6) 0.0293 (6) −0.0003 (5) 0.0042 (4) 0.0014 (4)
C4 0.0346 (6) 0.0230 (6) 0.0388 (6) 0.0009 (5) 0.0040 (5) 0.0010 (5)
C5 0.0316 (6) 0.0256 (6) 0.0462 (7) 0.0008 (5) 0.0068 (5) 0.0001 (5)
C6 0.0328 (6) 0.0261 (6) 0.0338 (6) −0.0020 (5) 0.0055 (5) 0.0008 (5)

Geometric parameters (Å, º)

S1—O2 1.4728 (10) C7—C12 1.383 (2)
S1—O3 1.4462 (12) C7—C8 1.381 (2)
S1—O4 1.4444 (14) C8—C9 1.389 (3)
S1—C7 1.7628 (15) C9—C10 1.382 (4)
O1—C4 1.2416 (16) C10—C13 1.511 (3)
N1—C6 1.3835 (16) C10—C11 1.376 (3)
N1—C2 1.3442 (16) C11—C12 1.388 (3)
N2—C2 1.3077 (18) C8—H8 0.9300
N3—C2 1.3410 (16) C9—H9 0.9300
N3—C4 1.3994 (16) C11—H11 0.9300
N6—C6 1.3228 (18) C12—H12 0.9300
N1—H1 0.8600 C13—H13C 0.9600
N2—H2A 0.8600 C13—H13A 0.9600
N2—H2B 0.8600 C13—H13B 0.9600
N3—H3 0.8600 C4—C5 1.3932 (18)
N6—H6B 0.8600 C5—C6 1.3725 (19)
N6—H6A 0.8600 C5—H5 0.9300
S1···H2A 3.0800 C5···O4ii 3.4031 (18)
S1···H2Bi 3.0100 C6···N2v 3.2886 (19)
S1···H3 2.8600 C6···O1iv 3.1973 (16)
O1···C6i 3.1973 (16) C6···C2v 3.5776 (18)
O1···N1i 2.6515 (14) C13···O4vi 3.298 (3)
O1···N6i 2.8201 (15) C4···H1i 3.0400
O1···C2ii 3.1894 (18) C4···H6Bi 3.0600
O2···N3 2.7689 (14) C7···H13Avii 3.1000
O2···N2i 2.8669 (16) C12···H13Biii 3.0100
O3···N2 2.7935 (17) H1···H2B 2.3000
O4···C5ii 3.4031 (18) H1···H6B 2.2200
O4···N6ii 2.9498 (18) H1···C4iv 3.0400
O4···C13iii 3.298 (3) H1···O1iv 1.8600
O1···H6Bi 2.0800 H2A···H3 2.3000
O1···H1i 1.8600 H2A···S1 3.0800
O2···H3 1.9200 H2A···O3 1.9500
O2···H2Bi 2.0100 H2B···H1 2.3000
O3···H12iv 2.8700 H2B···S1iv 3.0100
O3···H3 2.8400 H2B···O2iv 2.0100
O3···H8 2.6000 H3···S1 2.8600
O3···H2A 1.9500 H3···H2A 2.3000
O4···H5ii 2.8000 H3···O2 1.9200
O4···H13Ciii 2.9100 H3···O3 2.8400
O4···H6Aii 2.2500 H5···O4ii 2.8000
O4···H12 2.6800 H5···H8v 2.5100
N1···O1iv 2.6515 (14) H5···H6A 2.4600
N1···C2v 3.3319 (16) H6A···O4ii 2.2500
N2···O3 2.7935 (17) H6A···H5 2.4600
N2···O2iv 2.8669 (16) H6B···C4iv 3.0600
N2···C6v 3.2886 (19) H6B···H1 2.2200
N3···C5ii 3.4276 (18) H6B···O1iv 2.0800
N3···O2 2.7689 (14) H8···H5v 2.5100
N3···N3v 3.2844 (17) H8···O3 2.6000
N3···C4v 3.4212 (18) H9···H13B 2.4700
N3···C4ii 3.2207 (18) H11···H13C 2.4100
N6···O1iv 2.8201 (15) H12···O4 2.6800
N6···O4ii 2.9498 (18) H12···H13Biii 2.5300
C2···N1v 3.3319 (16) H12···O3i 2.8700
C2···C2v 3.3868 (17) H13A···C7viii 3.1000
C2···C6v 3.5776 (18) H13B···H9 2.4700
C2···O1ii 3.1894 (18) H13B···C12vi 3.0100
C4···N3ii 3.2207 (18) H13B···H12vi 2.5300
C4···C4ii 3.2446 (18) H13C···H11 2.4100
C4···N3v 3.4212 (18) H13C···O4vi 2.9100
C5···N3ii 3.4276 (18)
O2—S1—O3 110.84 (7) C7—C12—C11 119.19 (17)
O2—S1—O4 111.93 (7) C9—C8—H8 120.00
O2—S1—C7 105.89 (7) C7—C8—H8 120.00
O3—S1—O4 113.91 (8) C10—C9—H9 119.00
O3—S1—C7 106.83 (7) C8—C9—H9 119.00
O4—S1—C7 106.91 (7) C10—C11—H11 119.00
C2—N1—C6 122.36 (11) C12—C11—H11 119.00
C2—N3—C4 123.20 (10) C11—C12—H12 120.00
C6—N1—H1 119.00 C7—C12—H12 120.00
C2—N1—H1 119.00 C10—C13—H13C 109.00
C2—N2—H2B 120.00 H13B—C13—H13C 109.00
H2A—N2—H2B 120.00 C10—C13—H13A 109.00
C2—N2—H2A 120.00 C10—C13—H13B 109.00
C4—N3—H3 118.00 H13A—C13—H13C 109.00
C2—N3—H3 118.00 H13A—C13—H13B 110.00
C6—N6—H6A 120.00 N1—C2—N3 118.20 (11)
H6A—N6—H6B 120.00 N1—C2—N2 120.67 (12)
C6—N6—H6B 120.00 N2—C2—N3 121.13 (11)
S1—C7—C12 119.60 (12) N3—C4—C5 116.98 (11)
C8—C7—C12 119.99 (15) O1—C4—C5 125.95 (12)
S1—C7—C8 120.41 (11) O1—C4—N3 117.07 (11)
C7—C8—C9 119.68 (18) C4—C5—C6 120.20 (12)
C8—C9—C10 121.11 (19) N1—C6—N6 116.28 (12)
C11—C10—C13 120.3 (2) N1—C6—C5 118.97 (11)
C9—C10—C13 121.5 (2) N6—C6—C5 124.76 (12)
C9—C10—C11 118.19 (18) C4—C5—H5 120.00
C10—C11—C12 121.79 (19) C6—C5—H5 120.00
O2—S1—C7—C8 94.26 (13) S1—C7—C12—C11 −179.44 (13)
O2—S1—C7—C12 −84.77 (13) S1—C7—C8—C9 179.93 (13)
O3—S1—C7—C8 −23.93 (14) C12—C7—C8—C9 −1.0 (2)
O3—S1—C7—C12 157.04 (12) C8—C7—C12—C11 1.5 (2)
O4—S1—C7—C8 −146.24 (13) C7—C8—C9—C10 −1.0 (3)
O4—S1—C7—C12 34.72 (14) C8—C9—C10—C13 −176.68 (19)
C6—N1—C2—N2 −177.54 (12) C8—C9—C10—C11 2.4 (3)
C6—N1—C2—N3 3.24 (18) C13—C10—C11—C12 177.18 (19)
C2—N1—C6—N6 178.45 (12) C9—C10—C11—C12 −2.0 (3)
C2—N1—C6—C5 −1.84 (19) C10—C11—C12—C7 0.0 (3)
C2—N3—C4—O1 −176.29 (13) O1—C4—C5—C6 177.72 (14)
C2—N3—C4—C5 2.62 (19) N3—C4—C5—C6 −1.1 (2)
C4—N3—C2—N2 177.12 (12) C4—C5—C6—N6 −179.57 (14)
C4—N3—C2—N1 −3.67 (18) C4—C5—C6—N1 0.8 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) x, −y, z−1/2; (iv) x, y+1, z; (v) −x+1, y, −z+3/2; (vi) x, −y, z+1/2; (vii) −x+1/2, y+1/2, −z+3/2; (viii) −x+1/2, y−1/2, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1iv 0.86 1.86 2.6515 (14) 152
N2—H2A···O3 0.86 1.95 2.7935 (17) 166
N2—H2B···O2iv 0.86 2.01 2.8669 (16) 175
N3—H3···O2 0.86 1.92 2.7689 (14) 169
N6—H6A···O4ii 0.86 2.25 2.9498 (18) 139
N6—H6B···O1iv 0.86 2.08 2.8201 (15) 143

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iv) x, y+1, z.

References

  1. Ayer, D. E. (1991). Chem Abstr 115, 114546.
  2. Bogdan, C., Werner, E., Stenger, S., Wachter, H., Röllinghoff, M. & Werner-Felmayer, G. (1995). FEBS Lett. 363, 69–74. [DOI] [PubMed]
  3. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Gomathi, S. & Muthiah, P. T. (2011). Acta Cryst. E67, o2679–o2680. [DOI] [PMC free article] [PubMed]
  5. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. E60, o2038–o2040. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Su, X.-Y., Wang, W.-H., Lan, J.-B., Mao, Z.-H. & Xie, R.-G. (2007). Acta Cryst. E63, o4513–o4514.
  11. Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, o2294. [DOI] [PMC free article] [PubMed]
  12. Thomas, A. P. (1995a). World Patent WO 9515952.
  13. Thomas, A. P. (1995b). Chem Abstr. 123, 286077.
  14. Wang, K.-W. (2006). Acta Cryst. E62, o5136–o5137.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Wijaya, K., Moers, O., Blaschette, A. & Jones, P. G. (2004). Z. Naturforsch. Teil B, 59, 17–26.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015006787/su5107sup1.cif

e-71-00476-sup1.cif (26.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015006787/su5107Isup2.hkl

e-71-00476-Isup2.hkl (172.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015006787/su5107Isup3.cml

CCDC reference: 1057933

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES