Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Apr 18;71(Pt 5):509–515. doi: 10.1107/S2056989015007306

Crystal structures of 2,2′-bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide and bis(2,2′-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide

Zouaoui Setifi a,b, Arto Valkonen c, Manuel A Fernandes d, Sami Nummelin e, Habib Boughzala f, Fatima Setifi a,*, Christopher Glidewell g,*
PMCID: PMC4420140  PMID: 25995868

In each of the title compounds, the anion shows evidence of extensive electronic delocalization. A combination of N—H⋯N and X—H⋯N hydrogen bonds links the ions in (I) into a ribbon of alternating centrosymmetric Inline graphic(18) and Inline graphic(26) rings, and those in (II) into simple Inline graphic(7) chains of alternating cations and anion with further cations pendent from the chain.

Keywords: crystal structure, bipyridinium cations, polynitrile anions, mol­ecular conformation, hydrogen bonding

Abstract

In 2,2′-bipyridin-1-ium 1,1,3,3-tetra­cyano-2-eth­oxy­prop-2-en-1-ide, C10H9N2 +·C9H5N4O, (I), the ethyl group in the anion is disordered over two sets of atomic sites with occupancies 0.634 (9) and 0.366 (9), and the dihedral angle between the ring planes in the cation is 2.11 (7)°. The two independent C(CN)2 groups in the anion make dihedral angles of 10.60 (6) and 12.44 (4)° with the central propenide unit, and the bond distances in the anion provide evidence for extensive electronic delocalization. In bis­(2,2′-bipyridin-1-ium) 1,1,3,3-tetra­cyano-2-(di­cyano­methyl­ene)propane-1,3-diide [alternative name bis­(2,2′-bipyridin-1-ium) tris­(di­cyano­methyl­ene)methane­diide], 2C10H9N2 +·C10N6 2− (II), the dihedral angles between the ring planes in the two independent cations are 7.7 (2) and 10.92 (17)°. The anion exhibits approximate C 3 symmetry, consistent with extensive electronic delocalization, and the three independent C(CN)2 groups make dihedral angles of 23.8 (2), 27.0 (3) and 27.4 (2)° with the central plane. The ions in (I) are linked by an N—H⋯N hydrogen bond and the resulting ion pairs are linked by two independent C—H⋯N hydrogen bonds, forming a ribbon containing alternating R 4 4(18) and R 4 4(26) rings, where both ring types are centrosymmetric. The ions in (II) are linked by two independent N—H⋯N hydrogen bonds and the resulting ion triplets are linked by a C—H⋯N hydrogen bond, forming a C 2 1(7) chain containing anions and only one type of cation, with the other cation linked to the chain by a further C—H⋯N hydrogen bond.

Chemical context  

Polynitrile anions have received considerable attention recently because of their importance in both coordination chemistry and in mol­ecular materials chemistry (Miyazaki et al., 2003; Batten & Murray, 2003; Benmansour et al., 2007; Setifi, Domasevitch et al., 2013; Setifi, Setifi et al., 2013; Setifi, Lehchili et al., 2014). These organic anions are inter­esting for their extensive electronic delocalization, and for their structural versatility, in particular the potential to utilize a variety of coordination modes, including their action as bridging ligands between metal centres in μ2-, μ3- or μ4- modes, so forming polymeric assemblies which can be one-, two- or three-dimensional. Thus such anions readily form binary complexes with transition-metal and ternary complexes in which a transition-metal centre is also coordinated by other bridging or chelating ligands, and such materials exhibit inter­esting magnetic properties (Atmani et al., 2008; Benmansour et al., 2008, 2010, 2012; Setifi et al., 2009).graphic file with name e-71-00509-scheme1.jpg

In view of the possible roles of these versatile anionic ligands, we have been inter­ested in using them in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the extensive field of mol­ecular materials exhibiting the spin-crossover (SCO) phenomenon (Dupouy et al., 2008, 2009; Setifi, Charles et al., 2014). During the course of attempts to prepare such complexes, using the anions 1,1,3,3-tetra­cyano-2-eth­oxy­propenide (tcnoet) and tris­(di­cyano­methyl­ene)methane­diide (tcpd), we isolated the two title compounds whose structures are described here.

Structural commentary  

Compound (I) consists of a 2,2′-bipyridin-1-ium cation and a 1,1,3,3-tetra­cyano-2-eth­oxy­propenide anion in which the C atoms of the ethyl group are disordered over two sets of sites having occupancies 0.634 (9) and 0.366 (9). In the selected asymmetric unit for (I) (Fig. 1) the two ions are linked by an N—H⋯N hydrogen bond (Table 1). For compound (II), which consists of two 2,2′-bipyridin-1-ium cations and a single tris­(di­cyano­methyl­ene)methane­diide dianion, it was possible to select an asymmetric unit (Fig. 2) in which the two cations are both linked to the anion by N—H⋯N hydrogen bonds (Table 2), although an asymmetric unit selected in this way does not fit neatly into the reference unit cell. It will be convenient to refer to the cations of compound (II) containing the atoms N11 and N31 as cations of types 1 and 2 respectively.

Figure 1.

Figure 1

The independent ionic components of compound (I) showing the atom-labelling scheme and the N—H⋯N hydrogen bond within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯N21 0.901 (15) 2.202 (15) 2.6306 (15) 108.5 (12)
N11—H11⋯N311 0.901 (15) 2.082 (15) 2.8268 (17) 139.2 (13)
C13—H13⋯N331i 0.95 2.52 3.4294 (18) 160
C16—H16⋯N312ii 0.95 2.38 3.2238 (18) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

The independent ionic components of compound (II) showing the atom-labelling scheme and the N—H⋯N hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯N21 0.91 (3) 2.15 (3) 2.621 (4) 111 (3)
N11—H11⋯N511 0.91 (3) 2.08 (4) 2.874 (5) 145 (3)
N31—H31⋯N41 0.91 (4) 2.14 (3) 2.627 (4) 113 (3)
N31—H31⋯N522 0.91 (4) 2.15 (4) 2.888 (5) 138 (3)
C16—H16⋯N532 0.95 2.56 3.472 (6) 162
C34—H34⋯N522i 0.95 2.62 3.391 (5) 139

Symmetry code: (i) Inline graphic.

In none of the cations are the two rings exactly parallel: the dihedral angle between the mean planes of the two rings in the cation of compound (I) is 2.11 (7)°, and the corresponding angles for the type 1 and 2 cations of compound (II) are 10.92 (17) and 7.7 (2)° respectively. Although each cation contains a short intra-cation N—H⋯N contact (Tables 1 and 2), the very small N—H⋯N angles indicate that these contacts are unlikely to be of structural significance (cf. Wood et al., 2009).

In the anion of compound (I), the central bonds C31—C32 and C32—C33 have lengths which are equal within experimental uncertainly (Table 3). In addition, the four C—C bonds linking the cyano substituents to the central propenide unit are not only similar in length, but all of them are short for their type [mean value (Allen et al., 1987) 1.431 Å, lower quartile value 1.425 Å]; on the other hand, the C—N distances are all similar and long for their type (mean value 1.136 Å, upper quartile value 1.142 Å). These observations point to extensive delocalization of the negative charge in the anion of (I) with the forms (A)–(F) (see scheme below) all playing a role in the overall electronic structure. Accordingly, the N—H⋯N hydrogen bond linking the two ions within the selected asymmetric unit of (I) is a charge-assisted hydrogen bond (Gilli et al., 1994). The tetra­cyano­propenide fragment of this anion is not planar: the two C(CN)2 units are twisted out of the plane of the central C3O core in a conrotatory fashion, and the dihedral angles between the planes of the C(CN)2 units and that of the central core are 10.60 (6)° and 12.44 (4)° respectively for the two units containing atoms C31 and C33.graphic file with name e-71-00509-scheme2.jpg

Table 3. Selected geometric parameters (Å, °) for (I) .

C31—C32 1.3982 (17) C32—O321 1.3618 (13)
C32—C33 1.3956 (16) O321—C321 1.428 (2)
C31—C311 1.4136 (16) C311—N311 1.1471 (17)
C31—C312 1.4224 (16) C312—N312 1.1498 (16)
C33—C331 1.4261 (17) C331—N331 1.1504 (16)
C33—C332 1.4181 (16) C332—N332 1.1522 (16)
       
C32—C31—C311 119.84 (11) C32—C33—C331 119.94 (10)
C32—C31—C312 123.31 (10) C32—C33—C332 124.72 (11)
C311—C31—C312 116.80 (11) C331—C33—C332 115.15 (10)
N311—C311—C31 178.44 (17) C31—C32—C33 127.46 (10)
N312—C312—C31 178.53 (13) O321—C32—C31 118.45 (10)
N331—C331—C33 176.77 (13) O321—C32—C33 114.02 (10)
N332—C332—C33 175.54 (13)    
       
C31—C32—C33—C331 −171.92 (11) C31—C32—O321—C321 76.5 (3)
C31—C32—C33—C332 13.3 (2) C33—C32—O321—C321 −106.2 (3)
C33—C32—C31—C311 −166.68 (12) C32—O321—C321—C322 −156.1 (4)
C33—C32—C31—C312 10.92 (19)    

In the anion of compound (II), the geometry at the central atom C5 (Fig. 2) is planar, and the three C—C bonds involving atom C5 are similar in length (Table 4). Each of the independent C(CN)2 units is rotated out of the plane of the central four-atom core, with dihedral angles between the planes of these three units and that of the central core of 23.8 (3), 27.0 (3) and 27.4 (2)°, respectively, for the C(CN)2 units containing atoms C51, C52 and C53. These rotations are in a concerted sense, giving approximate mol­ecular, but not crystallographic, symmetry of D 3 (32) type for the anion. Although the bond distances involving the cyano substituents show some variations (Table 4) the approximate overall D 3 symmetry is consistent with delocalization of the two negative charges over the whole anion, particularly into the cyano groups.

Table 4. Selected geometric parameters (Å, °) for (II) .

C5—C51 1.411 (5) C53—C532 1.437 (6)
C5—C52 1.413 (5) C511—N511 1.136 (4)
C5—C53 1.433 (5) C512—N512 1.140 (5)
C51—C511 1.413 (5) C521—N521 1.155 (5)
C51—C512 1.439 (5) C522—N522 1.153 (5)
C52—C521 1.428 (5) C531—N531 1.129 (5)
C52—C522 1.410 (5) C532—N532 1.121 (5)
C53—C531 1.428 (6)    
       
C51—C5—C52 122.1 (3) C5—C52—C521 121.9 (3)
C51—C5—C53 119.5 (3) C5—C52—C522 123.0 (3)
C52—C5—C53 118.4 (4) C521—C52—C522 115.0 (3)
C5—C51—C511 120.9 (3) C5—C53—C531 121.2 (4)
C5—C51—C512 122.0 (3) C5—C53—C532 122.0 (4)
C511—C51—C512 117.1 (3) C531—C53—C532 116.9 (3)
       
C51—C5—C52—C521 26.5 (6) C51—C5—C53—C531 −153.1 (4)
C51—C5—C52—C522 −150.5 (4) C51—C5—C53—C532 25.9 (6)
C52—C5—C53—C531 28.8 (6) C52—C5—C51—C511 −156.5 (4)
C52—C5—C53—C532 −152.2 (4) C52—C5—C51—C512 22.0 (6)
C53—C5—C51—C511 25.5 (6) C53—C5—C52—C521 −155.5 (4)
C53—C5—C51—C512 −156.0 (4) C53—C5—C52—C522 27.5 (6)

Supra­molecular inter­actions  

The supra­molecular assembly in compound (I) is determined by the linkage of the ion pairs, themselves inter­nally linked by an N—H⋯N hydrogen bond (Fig. 1), by two independent C—H⋯N hydrogen bonds both of which involve donors in the protonated pyridyl ring (Table 1), and both of which therefore can be regarded as charge-assisted hydrogen bonds. The hydrogen bond having atom C13 as the donor links ion pairs related by translation, forming a Inline graphic(12) (Bernstein et al., 1995) chain running parallel to the [111] direction (Fig. 3). The hydrogen bond having atom C16 as the donor links ion pairs related by inversion, forming a centrosymmetric Inline graphic(18) motif (Fig. 3). The combination of these two inter­actions generates a ribbon running parallel to [111] in which Inline graphic(18) rings centred at (n − ½, n, n − ½) alternate with Inline graphic(26) rings centred at (n, n + ½, n), where n represents an integer in both cases (Fig. 3). A single ribbon of this type passes through each unit cell. The crystal structure of compound (I) contains no C—H⋯π hydrogen bonds, but there is a single rather weak π–π stacking inter­action between components of adjacent ribbons. The planes of the protonated pyridyl ring of the reference cation and of the unprotonated ring of the cation at (−x, 1 − y, 1 − z) make a dihedral angle of 2.11 (7)°: the ring-centroid separation is 3.7395 (8) Å and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.3413 (5) Å, corresponding to a ring-centroid offset of ca 1.65 Å, so that there is only a very modest overlap of the two rings in question (Fig. 4). If this inter­action is regarded as structurally significant, its effect is to link the ribbons (Fig. 3) into a sheet parallel to (1Inline graphic0).

Figure 3.

Figure 3

Part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded ribbon parallel to [111] in which centrosymmetric Inline graphic(18) and Inline graphic(26) rings alternate. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Figure 4.

Figure 4

Part of the crystal structure of compound (I) showing the overlap between pairs of inversion-related cations, viewed normal to the ring planes. For the sake of clarity, the unit-cell outline, the anions, and H atoms bonded to C atoms in the cations have all been omitted. Atoms marked with an asterisk (*) are at the symmetry position (−x, 1 − y, 1 − z).

Despite the presence of three independent ions in the structure of compound (II), the supra­molecular assembly in (II) is somewhat simpler than that in (I). Ion triplets (Fig. 2) which are related by the c-glide plane at y = 0.75 are linked by a C—H⋯N hydrogen bond (Table 2), forming a Inline graphic(7) chain running parallel to the [001] direction (Fig. 5). This chain comprises alternating anions and type 2 cations, while the type 1 cations are simply pendent from the chain. Two chains of this type, related to one another by inversion, pass through each unit cell but there are no direction-specific inter­actions between adjacent chains. Hydrogen bonds of the C—H⋯π type are absent from the crystal structure of compound (II) and the only π–π stacking inter­action lies within the hydrogen-bonded chain.

Figure 5.

Figure 5

A stereoview of part of the crystal structure of compound (II) showing the formation of a hydrogen-bonded Inline graphic(7) chain parallel to [001] from which the type 1 cations are pendent. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

Database survey  

We have recently reported the structures of several salts containing the 2-eth­oxy-1,1,3,3-tetra­cyano­propenide anion, including salts with the bis­(2,2′-bi-1H-imidazole)­copper(II) cation (Gaamoune et al., 2010), with tris­(phen­an­thro­line)iron(II) (Setifi, Setifi et al., 2013), with the 1,1′-diethyl-4,4′-bi­pyridine-1,1′-diium dication (Setifi, Lehchili et al., 2014) and with tris­(2,2′-bi­pyridine)­iron(II) (Setifi, Setifi et al., 2014). In each of these salts, the cyano substituents in the anion adopt a very similar conformation to that observed here in compound (I) with, in each case, a similar pattern of bond distances and hence of electronic delocalization. Despite the disparate nature of the counter-ions, the anion conformation is almost constant, suggesting that this is determined primarily by intra-anion forces, rather than by inter-ion inter­actions.

The structures of two organic salts containing the 2-di­cyano­methyl­ene-1,1,3,3-tetra­cyaopropenediide anion have been reported. In both the N,N′-dimethyl-4,4–bipyridindiium salt [CSD (Groom & Allen, 2014) refcode BELTER; Nakamura et al., 1981)] and the bis­(quinolinium) salt (CSD refcode QUCNPR10; Sakanoue et al., 1971) the anion adopts a conformation having approximately D 3 symmetry, just as found in compound (II) reported here: indeed, the anion in QUCNPR10 lies across a twofold rotation axis in space group Pbcn, so that while two of the twofold rotation axes are only approximate, the third is a crystallographic axis. As in compound (II), the C—C and C—N distances in the anions in both BELTER and QUCNPR10 show a degree of variation, but again the approximate symmetry is consistent with extensive electronic delocalization. The structures of the isomorphous salts of this anion with the cations [Ca(H2O)6]2+ (CSD refcode CAHCYB; Bekoe et al., 1967) and [Ba(H2O)6]2+ (CSD refcode BACMCP; Bekoe et al., 1963) have been determined, but no atomic coordinates are deposited in the CSD. A number of salts containing the 2,2′-bipyridin-1-ium cation with a range of organic anions have been structurally analysed, but more relevant to the present study are three salts of this cation with simple inorganic anions. In the hydrated monobromide (Bowen et al., 2004), the bromide ions and the water mol­ecules are linked by O—H⋯Br hydrogen bonds, forming Inline graphic(4) chains to which the cations are linked by N—H⋯ O hydrogen bonds. In the thio­cyanate salt, in which the cations are disordered over two sets of atomic sites (Kavitha et al., 2006), the ions are linked by a combination of N—H⋯N and C—H⋯N hydrogen bonds, forming Inline graphic(6) chains, while in the hydrogensulfate salt a combination of five independent hydrogen bonds links the ions into complex sheets (Kavitha et al., 2006).

Synthesis and crystallization  

The salts K(tcnoet) and K2(tcpd) were prepared using published methods (Middleton et al., 1958; Middleton & Engelhardt, 1958). Compounds (I) and (II) were prepared under solvothermal conditions in Teflon-lined steel autoclaves (inner volume ca 30 cm3). For the synthesis of salt (I), a mixture of iron(II) sulfate hepta­hydrate (28 mg, 0.1 mmol), 2,2′-bi­pyridine (16 mg, 0.1 mmol) and Ktcnoet (45 mg, 0.2 mmol) was dissolved in water–ethanol (4:1 v/v, 15 cm3) and then held in the autoclave at 393 K for 3 d. After slowly cooling to room temperature, pale-orange crystals of (I) suitable for single-crystal X-ray diffraction were obtained (yield 15%). The synthesis of (II) was similar to that of (I), but using K2tcpd (50 mg, 0.2 mmol) instead of K(tcnoet), giving yellow crystals suitable for single-crystal X-ray diffraction (yield 40%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. All H atoms in the cations were located in difference maps. The H atoms bonded to C atoms in the cations were then treated as riding atoms in geometrically idealized positions with C—H distances 0.95 Å and U iso(H) = 1.2U eq(C): for H atoms bonded to N atoms, the atomic coordinates were refined with U iso(H) = 1.2U eq(N), giving the N—H distances shown in Tables 1 and 2. It was apparent from an early stage that the eth­oxy substituent in the anion of compound (I) was disordered over two sets of atomic sites having unequal occupancy. For the minor occupancy component, atoms O341, C341 and C342 (see Fig. 1), the bonded distances and the one angle non-bonded distances were constrained to be identical to the corresponding distances in the major component, atoms O321, C321 and C322, subject to s.u. values of 0.005 and 0.01 Å respectively. In addition, the atomic coordinates and anisotropic displacement parameters of atoms O321 and O341 were constrained to be identical. Subject to these conditions, the site occupancies refined to values of 0.634 (9) and 0.366 (9). The H atoms in the disordered ethyl group of the anion in compound (I) were included in calculated positions with C—H distances of 0.98 Å with U iso(H) = 1.5U eq(C) for the methyl groups, which were permitted to rotate but not to tilt, and C—H distances of 0.99 Å with U iso(H) = 1.2U eq(C) for the CH2 groups.

Table 5. Experimental details.

  (I) (II)
Crystal data
Chemical formula C10H9N2 +·C9H5N4O 2C10H9N2 +·C10N6 2−
M r 342.36 518.54
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/c
Temperature (K) 123 173
a, b, c (Å) 7.2514 (1), 10.6647 (2), 11.5619 (2) 13.4195 (8), 16.1801 (8), 12.9058 (9)
α, β, γ (°) 100.020 (1), 104.372 (1), 92.590 (1) 90, 116.721 (3), 90
V3) 849.27 (3) 2503.0 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.09
Crystal size (mm) 0.40 × 0.35 × 0.13 0.21 × 0.14 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003)
T min, T max 0.870, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 6234, 4152, 3447 14513, 4607, 2137
R int 0.017 0.086
(sin θ/λ)max−1) 0.667 0.603
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.103, 1.02 0.067, 0.183, 0.98
No. of reflections 4152 4607
No. of parameters 259 367
No. of restraints 3 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.20 0.38, −0.26

Computer programs: COLLECT (Bruker, 2008), DENZO-SMN (Otwinowski & Minor, 1997), APEX2 and SAINT (Bruker, 2009, SIR2011 (Burla et al., 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989015007306/hb7404sup1.cif

e-71-00509-sup1.cif (694.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007306/hb7404Isup2.hkl

e-71-00509-Isup2.hkl (227.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015007306/hb7404IIsup3.hkl

e-71-00509-IIsup3.hkl (252.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015007306/hb7404Isup4.cml

Supporting information file. DOI: 10.1107/S2056989015007306/hb7404IIsup5.cml

CCDC references: 1059034, 1059033

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development and Ferhat Abbas Sétif 1 University for financial support.

supplementary crystallographic information

(I) 2,2'-Bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide. Crystal data

C10H9N2+·C9H5N4O Z = 2
Mr = 342.36 F(000) = 356
Triclinic, P1 Dx = 1.339 Mg m3
a = 7.2514 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.6647 (2) Å Cell parameters from 4152 reflections
c = 11.5619 (2) Å θ = 2.9–28.3°
α = 100.020 (1)° µ = 0.09 mm1
β = 104.372 (1)° T = 123 K
γ = 92.590 (1)° Plate, pale orange
V = 849.27 (3) Å3 0.40 × 0.35 × 0.13 mm

(I) 2,2'-Bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide. Data collection

Bruker APEXII CCD diffractometer 4152 independent reflections
Radiation source: fine-focus sealed tube 3447 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
φ & ω scans θmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −9→9
Tmin = 0.870, Tmax = 0.988 k = −11→14
6234 measured reflections l = −15→15

(I) 2,2'-Bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide. Refinement

Refinement on F2 3 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.2911P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
4152 reflections Δρmax = 0.25 e Å3
259 parameters Δρmin = −0.20 e Å3

(I) 2,2'-Bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide. Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(I) 2,2'-Bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N11 0.21857 (15) 0.52707 (9) 0.43771 (10) 0.0285 (2)
H11 0.304 (2) 0.5526 (14) 0.5105 (14) 0.034*
C12 0.13048 (16) 0.40769 (10) 0.41532 (11) 0.0250 (2)
C13 −0.00916 (18) 0.36846 (12) 0.30713 (11) 0.0300 (3)
H13 −0.0760 0.2858 0.2891 0.036*
C14 −0.0511 (2) 0.45071 (13) 0.22510 (12) 0.0354 (3)
H14 −0.1463 0.4240 0.1505 0.042*
C15 0.0455 (2) 0.57160 (13) 0.25183 (13) 0.0370 (3)
H15 0.0191 0.6278 0.1956 0.044*
C16 0.18018 (19) 0.60851 (12) 0.36102 (13) 0.0347 (3)
H16 0.2459 0.6917 0.3820 0.042*
N21 0.33192 (15) 0.39123 (10) 0.60741 (9) 0.0298 (2)
C22 0.19143 (16) 0.33195 (11) 0.51119 (10) 0.0248 (2)
C23 0.10772 (18) 0.20973 (12) 0.50218 (12) 0.0316 (3)
H23 0.0098 0.1704 0.4324 0.038*
C24 0.1711 (2) 0.14670 (12) 0.59796 (13) 0.0358 (3)
H24 0.1167 0.0631 0.5949 0.043*
C25 0.31365 (19) 0.20658 (13) 0.69753 (12) 0.0336 (3)
H25 0.3585 0.1656 0.7645 0.040*
C26 0.39027 (18) 0.32811 (13) 0.69780 (12) 0.0334 (3)
H26 0.4898 0.3686 0.7662 0.040*
C31 0.63575 (17) 0.92545 (11) 0.75796 (11) 0.0258 (2)
C32 0.66992 (16) 0.94146 (11) 0.88432 (11) 0.0243 (2)
C33 0.73776 (16) 1.05351 (11) 0.97022 (10) 0.0252 (2)
C311 0.52991 (19) 0.81335 (12) 0.68277 (12) 0.0327 (3)
N311 0.4472 (2) 0.72078 (12) 0.62292 (12) 0.0525 (4)
C312 0.69653 (17) 1.01940 (11) 0.69840 (11) 0.0278 (3)
N312 0.74430 (19) 1.09353 (11) 0.64791 (11) 0.0396 (3)
C331 0.78777 (17) 1.04922 (11) 1.09671 (11) 0.0281 (3)
N331 0.83067 (17) 1.05186 (11) 1.19987 (10) 0.0365 (3)
C332 0.74824 (17) 1.17768 (11) 0.94263 (11) 0.0277 (2)
N332 0.75833 (18) 1.28170 (10) 0.92815 (10) 0.0366 (3)
O321 0.62639 (12) 0.83982 (8) 0.93268 (8) 0.0279 (2) 0.634 (9)
C321 0.7550 (4) 0.7422 (3) 0.9381 (5) 0.0381 (9) 0.634 (9)
H32A 0.8632 0.7663 1.0117 0.046* 0.634 (9)
H32B 0.8069 0.7308 0.8658 0.046* 0.634 (9)
C322 0.6481 (8) 0.6213 (3) 0.9417 (6) 0.0430 (11) 0.634 (9)
H32C 0.7343 0.5530 0.9458 0.064* 0.634 (9)
H32D 0.5422 0.5977 0.8681 0.064* 0.634 (9)
H32E 0.5974 0.6334 1.0135 0.064* 0.634 (9)
O341 0.62639 (12) 0.83982 (8) 0.93268 (8) 0.0279 (2) 0.366 (9)
C341 0.6787 (17) 0.7134 (5) 0.8864 (6) 0.051 (2) 0.366 (9)
H34A 0.8019 0.7218 0.8647 0.061* 0.366 (9)
H34B 0.5796 0.6712 0.8125 0.061* 0.366 (9)
C342 0.6957 (17) 0.6360 (6) 0.9825 (6) 0.0423 (18) 0.366 (9)
H42C 0.7350 0.5519 0.9541 0.063* 0.366 (9)
H42D 0.5718 0.6252 1.0010 0.063* 0.366 (9)
H42E 0.7914 0.6796 1.0560 0.063* 0.366 (9)

(I) 2,2'-Bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0302 (5) 0.0213 (5) 0.0365 (6) −0.0010 (4) 0.0157 (4) 0.0026 (4)
C12 0.0269 (6) 0.0197 (5) 0.0310 (6) 0.0016 (4) 0.0148 (5) 0.0016 (4)
C13 0.0346 (6) 0.0245 (6) 0.0316 (6) 0.0005 (5) 0.0123 (5) 0.0021 (5)
C14 0.0414 (7) 0.0367 (7) 0.0310 (6) 0.0075 (6) 0.0142 (6) 0.0065 (5)
C15 0.0456 (8) 0.0347 (7) 0.0422 (7) 0.0120 (6) 0.0257 (6) 0.0161 (6)
C16 0.0394 (7) 0.0243 (6) 0.0491 (8) 0.0029 (5) 0.0261 (6) 0.0097 (5)
N21 0.0296 (5) 0.0285 (5) 0.0301 (5) −0.0028 (4) 0.0097 (4) 0.0011 (4)
C22 0.0254 (5) 0.0216 (5) 0.0283 (6) 0.0006 (4) 0.0113 (4) 0.0012 (4)
C23 0.0338 (6) 0.0232 (6) 0.0342 (6) −0.0026 (5) 0.0047 (5) 0.0035 (5)
C24 0.0398 (7) 0.0245 (6) 0.0419 (7) −0.0003 (5) 0.0076 (6) 0.0084 (5)
C25 0.0326 (6) 0.0342 (7) 0.0361 (7) 0.0068 (5) 0.0092 (5) 0.0107 (5)
C26 0.0293 (6) 0.0373 (7) 0.0313 (6) −0.0007 (5) 0.0066 (5) 0.0031 (5)
C31 0.0275 (6) 0.0206 (5) 0.0310 (6) −0.0001 (4) 0.0110 (5) 0.0049 (4)
C32 0.0212 (5) 0.0218 (5) 0.0332 (6) 0.0027 (4) 0.0102 (4) 0.0092 (4)
C33 0.0241 (5) 0.0246 (6) 0.0280 (6) 0.0020 (4) 0.0067 (4) 0.0082 (4)
C311 0.0382 (7) 0.0266 (6) 0.0371 (7) −0.0017 (5) 0.0197 (5) 0.0027 (5)
N311 0.0676 (9) 0.0374 (7) 0.0510 (8) −0.0208 (6) 0.0312 (7) −0.0117 (6)
C312 0.0327 (6) 0.0219 (5) 0.0297 (6) 0.0019 (4) 0.0116 (5) 0.0020 (4)
N312 0.0552 (7) 0.0269 (5) 0.0423 (6) 0.0002 (5) 0.0233 (6) 0.0075 (5)
C331 0.0272 (6) 0.0240 (6) 0.0334 (7) −0.0001 (4) 0.0071 (5) 0.0082 (5)
N331 0.0447 (7) 0.0315 (6) 0.0314 (6) −0.0005 (5) 0.0047 (5) 0.0095 (4)
C332 0.0308 (6) 0.0257 (6) 0.0253 (6) 0.0025 (4) 0.0057 (5) 0.0042 (4)
N332 0.0522 (7) 0.0265 (6) 0.0300 (6) 0.0033 (5) 0.0082 (5) 0.0063 (4)
O321 0.0309 (4) 0.0215 (4) 0.0357 (5) 0.0025 (3) 0.0145 (4) 0.0092 (3)
C321 0.0313 (13) 0.0412 (15) 0.055 (2) 0.0185 (11) 0.0194 (12) 0.0291 (14)
C322 0.061 (3) 0.0208 (13) 0.054 (3) 0.0070 (12) 0.027 (2) 0.0080 (15)
O341 0.0309 (4) 0.0215 (4) 0.0357 (5) 0.0025 (3) 0.0145 (4) 0.0092 (3)
C341 0.090 (6) 0.037 (3) 0.039 (3) 0.033 (3) 0.029 (3) 0.019 (2)
C342 0.061 (5) 0.026 (3) 0.043 (4) 0.010 (2) 0.018 (3) 0.007 (2)

(I) 2,2'-Bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide. Geometric parameters (Å, º)

N11—C16 1.3361 (17) C32—C33 1.3956 (16)
N11—C12 1.3512 (14) C31—C311 1.4136 (16)
N11—H11 0.901 (16) C31—C312 1.4224 (16)
C12—C13 1.3842 (17) C33—C331 1.4261 (17)
C12—C22 1.4755 (17) C33—C332 1.4181 (16)
C13—C14 1.3900 (18) C32—O321 1.3618 (13)
C13—H13 0.9500 O321—C321 1.428 (2)
C14—C15 1.3860 (19) C311—N311 1.1471 (17)
C14—H14 0.9500 C312—N312 1.1498 (16)
C15—C16 1.372 (2) C331—N331 1.1504 (16)
C15—H15 0.9500 C332—N332 1.1522 (16)
C16—H16 0.9500 C321—C322 1.487 (3)
N21—C26 1.3325 (17) C321—H32A 0.9900
N21—C22 1.3451 (15) C321—H32B 0.9900
C22—C23 1.3886 (16) C322—H32C 0.9800
C23—C24 1.3870 (18) C322—H32D 0.9800
C23—H23 0.9500 C322—H32E 0.9800
C24—C25 1.3767 (19) C341—C342 1.480 (4)
C24—H24 0.9500 C341—H34A 0.9900
C25—C26 1.3861 (18) C341—H34B 0.9900
C25—H25 0.9500 C342—H42C 0.9800
C26—H26 0.9500 C342—H42D 0.9800
C31—C32 1.3982 (17) C342—H42E 0.9800
C16—N11—C12 123.83 (12) C32—C31—C312 123.31 (10)
C16—N11—H11 119.5 (10) C311—C31—C312 116.80 (11)
C12—N11—H11 116.6 (10) N311—C311—C31 178.44 (17)
N11—C12—C13 117.84 (11) N312—C312—C31 178.53 (13)
N11—C12—C22 116.02 (11) N331—C331—C33 176.77 (13)
C13—C12—C22 126.13 (10) N332—C332—C33 175.54 (13)
C12—C13—C14 119.62 (12) C32—C33—C331 119.94 (10)
C12—C13—H13 120.2 C32—C33—C332 124.72 (11)
C14—C13—H13 120.2 C331—C33—C332 115.15 (10)
C15—C14—C13 120.18 (13) C31—C32—C33 127.46 (10)
C15—C14—H14 119.9 O321—C32—C31 118.45 (10)
C13—C14—H14 119.9 O321—C32—C33 114.02 (10)
C16—C15—C14 118.72 (12) C32—O321—C321 117.18 (14)
C16—C15—H15 120.6 O321—C321—C322 108.2 (3)
C14—C15—H15 120.6 O321—C321—H32A 110.1
N11—C16—C15 119.78 (12) C322—C321—H32A 110.1
N11—C16—H16 120.1 O321—C321—H32B 110.1
C15—C16—H16 120.1 C322—C321—H32B 110.1
C26—N21—C22 117.27 (11) H32A—C321—H32B 108.4
N21—C22—C23 123.22 (11) C321—C322—H32C 109.5
N21—C22—C12 114.70 (10) C321—C322—H32D 109.5
C23—C22—C12 122.08 (11) H32C—C322—H32D 109.5
C24—C23—C22 118.13 (12) C321—C322—H32E 109.5
C24—C23—H23 120.9 H32C—C322—H32E 109.5
C22—C23—H23 120.9 H32D—C322—H32E 109.5
C25—C24—C23 119.32 (12) C342—C341—H34A 110.0
C25—C24—H24 120.3 C342—C341—H34B 110.0
C23—C24—H24 120.3 H34A—C341—H34B 108.4
C24—C25—C26 118.46 (12) C341—C342—H42C 109.5
C24—C25—H25 120.8 C341—C342—H42D 109.5
C26—C25—H25 120.8 H42C—C342—H42D 109.5
N21—C26—C25 123.59 (12) C341—C342—H42E 109.5
N21—C26—H26 118.2 H42C—C342—H42E 109.5
C25—C26—H26 118.2 H42D—C342—H42E 109.5
C32—C31—C311 119.84 (11)
C16—N11—C12—C13 −0.79 (17) C22—C23—C24—C25 −0.2 (2)
C16—N11—C12—C22 −179.72 (10) C23—C24—C25—C26 −0.6 (2)
N11—C12—C13—C14 1.28 (17) C22—N21—C26—C25 −0.31 (18)
C22—C12—C13—C14 −179.92 (11) C24—C25—C26—N21 0.9 (2)
C12—C13—C14—C15 −0.39 (19) C311—C31—C32—O321 10.27 (17)
C13—C14—C15—C16 −1.02 (19) C312—C31—C32—O321 −172.13 (11)
C12—N11—C16—C15 −0.64 (18) O321—C32—C33—C331 11.01 (16)
C14—C15—C16—N11 1.53 (19) O321—C32—C33—C332 −163.73 (11)
C26—N21—C22—C23 −0.53 (17) C31—C32—C33—C331 −171.92 (11)
C26—N21—C22—C12 178.83 (10) C31—C32—C33—C332 13.3 (2)
N11—C12—C22—N21 −1.88 (15) C33—C32—C31—C311 −166.68 (12)
C13—C12—C22—N21 179.30 (11) C33—C32—C31—C312 10.92 (19)
N11—C12—C22—C23 177.49 (11) C31—C32—O321—C321 76.5 (3)
C13—C12—C22—C23 −1.34 (18) C33—C32—O321—C321 −106.2 (3)
N21—C22—C23—C24 0.76 (19) C32—O321—C321—C322 −156.1 (4)
C12—C22—C23—C24 −178.54 (11)

(I) 2,2'-Bipyridin-1-ium 1,1,3,3-tetracyano-2-ethoxyprop-2-en-1-ide. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11···N21 0.901 (15) 2.202 (15) 2.6306 (15) 108.5 (12)
N11—H11···N311 0.901 (15) 2.082 (15) 2.8268 (17) 139.2 (13)
C13—H13···N331i 0.95 2.52 3.4294 (18) 160
C16—H16···N312ii 0.95 2.38 3.2238 (18) 148

Symmetry codes: (i) x−1, y−1, z−1; (ii) −x+1, −y+2, −z+1.

(II) Bis(2,2'-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide. Crystal data

2C10H9N2+·C10N62 F(000) = 1072
Mr = 518.54 Dx = 1.376 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.4195 (8) Å Cell parameters from 5568 reflections
b = 16.1801 (8) Å θ = 1.7–28.3°
c = 12.9058 (9) Å µ = 0.09 mm1
β = 116.721 (3)° T = 173 K
V = 2503.0 (3) Å3 Block, yellow
Z = 4 0.21 × 0.14 × 0.09 mm

(II) Bis(2,2'-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide. Data collection

Bruker APEXII CCD diffractometer 2137 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.086
Graphite monochromator θmax = 25.4°, θmin = 1.7°
φ & ω scans h = −13→16
14513 measured reflections k = −18→19
4607 independent reflections l = −15→14

(II) Bis(2,2'-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide. Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0713P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max < 0.001
4607 reflections Δρmax = 0.38 e Å3
367 parameters Δρmin = −0.26 e Å3

(II) Bis(2,2'-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide. Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(II) Bis(2,2'-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N11 0.3903 (2) 0.52309 (19) 0.3636 (3) 0.0206 (8)
H11 0.383 (3) 0.483 (2) 0.409 (3) 0.025*
C12 0.3951 (3) 0.4944 (2) 0.2684 (3) 0.0209 (9)
C13 0.4011 (3) 0.5512 (2) 0.1917 (3) 0.0245 (10)
H13 0.4047 0.5330 0.1234 0.029*
C14 0.4019 (3) 0.6344 (3) 0.2146 (4) 0.0320 (11)
H14 0.4044 0.6737 0.1612 0.038*
C15 0.3990 (3) 0.6611 (2) 0.3151 (4) 0.0317 (11)
H15 0.4006 0.7184 0.3317 0.038*
C16 0.3937 (3) 0.6040 (2) 0.3895 (4) 0.0250 (10)
H16 0.3925 0.6210 0.4593 0.030*
N21 0.3977 (3) 0.36187 (19) 0.3483 (3) 0.0273 (9)
C22 0.3892 (3) 0.4033 (2) 0.2542 (4) 0.0235 (10)
C23 0.3719 (3) 0.3648 (2) 0.1524 (4) 0.0300 (11)
H23 0.3679 0.3958 0.0882 0.036*
C24 0.3604 (3) 0.2798 (3) 0.1462 (4) 0.0401 (12)
H24 0.3465 0.2513 0.0766 0.048*
C25 0.3694 (4) 0.2373 (3) 0.2413 (5) 0.0409 (12)
H25 0.3622 0.1789 0.2392 0.049*
C26 0.3890 (3) 0.2808 (3) 0.3404 (4) 0.0369 (12)
H26 0.3966 0.2507 0.4067 0.044*
N31 0.1131 (3) 0.62657 (19) 1.1404 (3) 0.0246 (9)
H31 0.115 (3) 0.592 (2) 1.086 (3) 0.030*
C32 0.1142 (3) 0.5861 (2) 1.2326 (3) 0.0185 (9)
C33 0.1241 (3) 0.6335 (2) 1.3253 (4) 0.0285 (10)
H33 0.1266 0.6075 1.3924 0.034*
C34 0.1307 (3) 0.7188 (2) 1.3214 (4) 0.0329 (11)
H34 0.1378 0.7510 1.3859 0.039*
C35 0.1269 (3) 0.7569 (2) 1.2248 (4) 0.0292 (11)
H35 0.1295 0.8154 1.2209 0.035*
C36 0.1195 (3) 0.7089 (2) 1.1343 (4) 0.0316 (11)
H36 0.1188 0.7339 1.0674 0.038*
N41 0.1140 (3) 0.46447 (19) 1.1296 (3) 0.0227 (8)
C42 0.1077 (3) 0.4958 (2) 1.2227 (3) 0.0207 (9)
C43 0.0985 (3) 0.4463 (2) 1.3062 (4) 0.0283 (10)
H43 0.0916 0.4702 1.3699 0.034*
C44 0.0998 (3) 0.3618 (2) 1.2944 (4) 0.0307 (11)
H44 0.0965 0.3264 1.3515 0.037*
C45 0.1060 (3) 0.3294 (3) 1.1987 (4) 0.0299 (11)
H45 0.1053 0.2713 1.1875 0.036*
C46 0.1132 (3) 0.3834 (2) 1.1198 (4) 0.0285 (11)
H46 0.1178 0.3608 1.0542 0.034*
C5 0.2470 (3) 0.5068 (2) 0.7478 (3) 0.0208 (9)
C51 0.2195 (3) 0.4600 (2) 0.6463 (3) 0.0236 (10)
C511 0.2894 (3) 0.4602 (2) 0.5908 (3) 0.0200 (9)
N511 0.3457 (3) 0.4592 (2) 0.5464 (3) 0.0344 (9)
C512 0.1214 (4) 0.4089 (3) 0.5963 (4) 0.0290 (11)
N512 0.0434 (3) 0.3695 (2) 0.5487 (3) 0.0435 (11)
C52 0.2057 (3) 0.4868 (2) 0.8279 (3) 0.0255 (10)
C521 0.1746 (3) 0.4044 (3) 0.8405 (4) 0.0271 (10)
N521 0.1522 (3) 0.3395 (2) 0.8607 (3) 0.0375 (10)
C522 0.1872 (3) 0.5464 (2) 0.8970 (4) 0.0233 (10)
N522 0.1686 (3) 0.5942 (2) 0.9524 (3) 0.0351 (9)
C53 0.3161 (3) 0.5786 (2) 0.7695 (4) 0.0271 (10)
C531 0.3839 (4) 0.6070 (3) 0.8849 (4) 0.0304 (11)
N531 0.4417 (3) 0.6318 (2) 0.9736 (3) 0.0456 (11)
C532 0.3220 (3) 0.6245 (2) 0.6771 (4) 0.0261 (10)
N532 0.3242 (3) 0.6642 (2) 0.6070 (3) 0.0331 (9)

(II) Bis(2,2'-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0184 (19) 0.023 (2) 0.023 (2) −0.0027 (15) 0.0117 (17) −0.0006 (16)
C12 0.015 (2) 0.035 (2) 0.014 (2) −0.0003 (17) 0.0069 (19) −0.0038 (19)
C13 0.024 (3) 0.036 (3) 0.017 (2) −0.0011 (19) 0.012 (2) 0.004 (2)
C14 0.023 (3) 0.037 (3) 0.031 (3) −0.001 (2) 0.007 (2) 0.010 (2)
C15 0.028 (3) 0.022 (2) 0.042 (3) 0.0000 (18) 0.013 (2) 0.001 (2)
C16 0.020 (2) 0.030 (2) 0.023 (3) 0.0050 (18) 0.009 (2) 0.000 (2)
N21 0.031 (2) 0.025 (2) 0.027 (2) 0.0023 (15) 0.0142 (19) 0.0049 (16)
C22 0.015 (2) 0.030 (2) 0.025 (3) 0.0011 (18) 0.010 (2) −0.003 (2)
C23 0.027 (3) 0.043 (3) 0.025 (3) −0.005 (2) 0.016 (2) −0.006 (2)
C24 0.032 (3) 0.045 (3) 0.040 (3) 0.005 (2) 0.012 (3) −0.016 (2)
C25 0.034 (3) 0.030 (3) 0.055 (4) −0.003 (2) 0.017 (3) −0.006 (3)
C26 0.041 (3) 0.029 (3) 0.037 (3) 0.001 (2) 0.014 (3) 0.001 (2)
N31 0.035 (2) 0.022 (2) 0.022 (2) 0.0014 (15) 0.0167 (19) −0.0069 (16)
C32 0.015 (2) 0.028 (2) 0.014 (2) 0.0015 (17) 0.007 (2) −0.0003 (19)
C33 0.030 (3) 0.039 (3) 0.021 (3) 0.006 (2) 0.015 (2) 0.004 (2)
C34 0.035 (3) 0.038 (3) 0.033 (3) −0.005 (2) 0.021 (2) −0.013 (2)
C35 0.033 (3) 0.025 (2) 0.039 (3) 0.0009 (18) 0.024 (2) 0.000 (2)
C36 0.040 (3) 0.028 (3) 0.035 (3) 0.002 (2) 0.024 (3) 0.003 (2)
N41 0.023 (2) 0.026 (2) 0.020 (2) −0.0006 (15) 0.0112 (17) −0.0023 (16)
C42 0.018 (2) 0.022 (2) 0.023 (3) −0.0001 (16) 0.009 (2) 0.0065 (19)
C43 0.023 (3) 0.042 (3) 0.018 (3) 0.0018 (19) 0.007 (2) 0.000 (2)
C44 0.030 (3) 0.029 (3) 0.033 (3) −0.0034 (19) 0.013 (2) 0.008 (2)
C45 0.022 (3) 0.031 (2) 0.035 (3) −0.0032 (18) 0.011 (2) 0.000 (2)
C46 0.021 (3) 0.033 (3) 0.031 (3) −0.0029 (18) 0.011 (2) −0.007 (2)
C5 0.016 (2) 0.027 (2) 0.023 (2) −0.0003 (16) 0.0113 (19) 0.0029 (18)
C51 0.020 (2) 0.026 (2) 0.024 (3) 0.0013 (18) 0.010 (2) 0.000 (2)
C511 0.021 (2) 0.022 (2) 0.020 (2) −0.0016 (17) 0.011 (2) −0.0003 (18)
N511 0.029 (2) 0.049 (2) 0.028 (2) 0.0044 (17) 0.015 (2) −0.0028 (18)
C512 0.030 (3) 0.036 (3) 0.028 (3) −0.002 (2) 0.019 (2) −0.007 (2)
N512 0.047 (3) 0.051 (2) 0.038 (3) −0.017 (2) 0.023 (2) −0.005 (2)
C52 0.032 (3) 0.025 (2) 0.023 (3) 0.0061 (18) 0.016 (2) 0.0042 (19)
C521 0.023 (3) 0.035 (3) 0.024 (3) −0.004 (2) 0.012 (2) 0.001 (2)
N521 0.050 (3) 0.035 (2) 0.032 (3) −0.0127 (18) 0.022 (2) −0.0073 (18)
C522 0.028 (3) 0.024 (2) 0.019 (2) −0.0046 (18) 0.012 (2) −0.003 (2)
N522 0.038 (2) 0.046 (2) 0.025 (2) 0.0089 (19) 0.017 (2) 0.0015 (19)
C53 0.032 (3) 0.028 (2) 0.025 (3) −0.0022 (19) 0.017 (2) 0.003 (2)
C531 0.034 (3) 0.037 (3) 0.023 (3) −0.005 (2) 0.015 (3) 0.000 (2)
N531 0.050 (3) 0.052 (2) 0.031 (3) −0.023 (2) 0.014 (2) −0.008 (2)
C532 0.024 (3) 0.029 (2) 0.026 (3) −0.0022 (18) 0.012 (2) 0.002 (2)
N532 0.043 (2) 0.028 (2) 0.035 (3) −0.0075 (17) 0.024 (2) −0.0010 (18)

(II) Bis(2,2'-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide. Geometric parameters (Å, º)

N11—C12 1.342 (4) C34—H34 0.9500
N11—C16 1.346 (5) C35—C36 1.368 (6)
N11—H11 0.91 (4) C35—H35 0.9500
C12—C13 1.379 (5) C36—H36 0.9500
C12—C22 1.483 (5) N41—C46 1.317 (5)
C13—C14 1.378 (5) N41—C42 1.341 (5)
C13—H13 0.9500 C42—C43 1.392 (5)
C14—C15 1.384 (6) C43—C44 1.375 (5)
C14—H14 0.9500 C43—H43 0.9500
C15—C16 1.357 (5) C44—C45 1.379 (6)
C15—H15 0.9500 C44—H44 0.9500
C16—H16 0.9500 C45—C46 1.378 (5)
N21—C26 1.316 (5) C45—H45 0.9500
N21—C22 1.346 (5) C46—H46 0.9500
C22—C23 1.375 (5) C5—C51 1.411 (5)
C23—C24 1.383 (6) C5—C52 1.413 (5)
C23—H23 0.9500 C5—C53 1.433 (5)
C24—C25 1.364 (6) C51—C511 1.413 (5)
C24—H24 0.9500 C51—C512 1.439 (5)
C25—C26 1.378 (6) C52—C521 1.428 (5)
C25—H25 0.9500 C52—C522 1.410 (5)
C26—H26 0.9500 C53—C531 1.428 (6)
N31—C36 1.340 (5) C53—C532 1.437 (6)
N31—C32 1.353 (5) C511—N511 1.136 (4)
N31—H31 0.90 (4) C512—N512 1.140 (5)
C32—C33 1.375 (5) C521—N521 1.155 (5)
C32—C42 1.466 (5) C522—N522 1.153 (5)
C33—C34 1.386 (5) C531—N531 1.129 (5)
C33—H33 0.9500 C532—N532 1.121 (5)
C34—C35 1.371 (6)
C12—N11—C16 123.5 (3) C35—C34—C33 120.3 (4)
C12—N11—H11 114 (2) C35—C34—H34 119.9
C16—N11—H11 123 (2) C33—C34—H34 119.9
N11—C12—C13 118.0 (4) C36—C35—C34 118.7 (4)
N11—C12—C22 115.8 (3) C36—C35—H35 120.7
C13—C12—C22 126.2 (4) C34—C35—H35 120.7
C14—C13—C12 119.6 (4) N31—C36—C35 119.8 (4)
C14—C13—H13 120.2 N31—C36—H36 120.1
C12—C13—H13 120.2 C35—C36—H36 120.1
C13—C14—C15 120.4 (4) C46—N41—C42 117.5 (3)
C13—C14—H14 119.8 N41—C42—C43 122.6 (4)
C15—C14—H14 119.8 N41—C42—C32 115.4 (3)
C16—C15—C14 118.9 (4) C43—C42—C32 121.9 (4)
C16—C15—H15 120.6 C44—C43—C42 118.5 (4)
C14—C15—H15 120.6 C44—C43—H43 120.8
N11—C16—C15 119.6 (4) C42—C43—H43 120.8
N11—C16—H16 120.2 C43—C44—C45 119.1 (4)
C15—C16—H16 120.2 C43—C44—H44 120.5
C26—N21—C22 117.3 (4) C45—C44—H44 120.5
N21—C22—C23 123.0 (4) C46—C45—C44 118.2 (4)
N21—C22—C12 113.9 (3) C46—C45—H45 120.9
C23—C22—C12 123.0 (4) C44—C45—H45 120.9
C22—C23—C24 118.2 (4) N41—C46—C45 124.1 (4)
C22—C23—H23 120.9 N41—C46—H46 117.9
C24—C23—H23 120.9 C45—C46—H46 117.9
C25—C24—C23 119.1 (4) C51—C5—C52 122.1 (3)
C25—C24—H24 120.5 C51—C5—C53 119.5 (3)
C23—C24—H24 120.5 C52—C5—C53 118.4 (4)
C24—C25—C26 118.7 (4) C5—C51—C511 120.9 (3)
C24—C25—H25 120.6 C5—C51—C512 122.0 (3)
C26—C25—H25 120.6 C511—C51—C512 117.1 (3)
N21—C26—C25 123.6 (4) N511—C511—C51 179.0 (4)
N21—C26—H26 118.2 N512—C512—C51 174.8 (5)
C25—C26—H26 118.2 C5—C52—C521 121.9 (3)
C36—N31—C32 123.8 (4) C5—C52—C522 123.0 (3)
C36—N31—H31 123 (2) C521—C52—C522 115.0 (3)
C32—N31—H31 112 (2) N521—C521—C52 174.0 (4)
N31—C32—C33 117.0 (4) N522—C522—C52 177.7 (4)
N31—C32—C42 115.4 (3) C5—C53—C531 121.2 (4)
C33—C32—C42 127.5 (4) C5—C53—C532 122.0 (4)
C32—C33—C34 120.4 (4) C531—C53—C532 116.9 (3)
C32—C33—H33 119.8 N531—C531—C53 175.7 (5)
C34—C33—H33 119.8 N532—C532—C53 176.0 (4)
C16—N11—C12—C13 −1.6 (5) C32—N31—C36—C35 −0.4 (6)
C16—N11—C12—C22 −179.5 (3) C34—C35—C36—N31 1.7 (6)
N11—C12—C13—C14 −0.1 (5) C46—N41—C42—C43 −1.2 (5)
C22—C12—C13—C14 177.6 (4) C46—N41—C42—C32 177.3 (3)
C12—C13—C14—C15 1.4 (6) N31—C32—C42—N41 7.0 (5)
C13—C14—C15—C16 −1.0 (6) C33—C32—C42—N41 −171.0 (4)
C12—N11—C16—C15 2.0 (5) N31—C32—C42—C43 −174.5 (3)
C14—C15—C16—N11 −0.7 (6) C33—C32—C42—C43 7.4 (6)
C26—N21—C22—C23 0.1 (6) N41—C42—C43—C44 2.3 (6)
C26—N21—C22—C12 177.5 (3) C32—C42—C43—C44 −176.1 (4)
N11—C12—C22—N21 −10.0 (5) C42—C43—C44—C45 −2.3 (6)
C13—C12—C22—N21 172.3 (4) C43—C44—C45—C46 1.4 (6)
N11—C12—C22—C23 167.4 (3) C42—N41—C46—C45 0.2 (6)
C13—C12—C22—C23 −10.3 (6) C44—C45—C46—N41 −0.4 (6)
N21—C22—C23—C24 1.5 (6) C51—C5—C52—C521 26.5 (6)
C12—C22—C23—C24 −175.8 (3) C51—C5—C52—C522 −150.5 (4)
C22—C23—C24—C25 −1.6 (6) C52—C5—C53—C531 28.8 (6)
C23—C24—C25—C26 0.4 (6) C52—C5—C53—C532 −152.2 (4)
C22—N21—C26—C25 −1.4 (6) C53—C5—C51—C511 25.5 (6)
C24—C25—C26—N21 1.3 (7) C53—C5—C51—C512 −156.0 (4)
C36—N31—C32—C33 −1.0 (5) C51—C5—C53—C531 −153.1 (4)
C36—N31—C32—C42 −179.3 (3) C51—C5—C53—C532 25.9 (6)
N31—C32—C33—C34 1.1 (5) C52—C5—C51—C511 −156.5 (4)
C42—C32—C33—C34 179.1 (4) C52—C5—C51—C512 22.0 (6)
C32—C33—C34—C35 0.2 (6) C53—C5—C52—C521 −155.5 (4)
C33—C34—C35—C36 −1.6 (6) C53—C5—C52—C522 27.5 (6)

(II) Bis(2,2'-bipyridin-1-ium) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11···N21 0.91 (3) 2.15 (3) 2.621 (4) 111 (3)
N11—H11···N511 0.91 (3) 2.08 (4) 2.874 (5) 145 (3)
N31—H31···N41 0.91 (4) 2.14 (3) 2.627 (4) 113 (3)
N31—H31···N522 0.91 (4) 2.15 (4) 2.888 (5) 138 (3)
C16—H16···N532 0.95 2.56 3.472 (6) 162
C34—H34···N522i 0.95 2.62 3.391 (5) 139

Symmetry code: (i) x, −y+3/2, z+1/2.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.
  3. Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130.
  4. Bekoe, D. A., Gantzel, P. K. & Trueblood, K. N. (1967). Acta Cryst. 22, 657–665.
  5. Bekoe, D. A., Gauzel, P. K. & Trueblood, K. N. (1963). Acta Cryst. 16, A62.
  6. Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.
  7. Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862.
  8. Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365. [DOI] [PubMed]
  9. Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186–194.
  10. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  11. Bowen, R. J., Fernandes, M. A., Gitari, P. W. & Layh, M. (2004). Acta Cryst. C60, o113–o114. [DOI] [PubMed]
  12. Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
  13. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  14. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
  15. Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Létard, J.-F. (2009). Chem. Commun. pp. 3404–3406. [DOI] [PubMed]
  16. Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J. & Guionneau, P. (2008). Inorg. Chem. 47, 8921–8931. [DOI] [PubMed]
  17. Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045. [DOI] [PMC free article] [PubMed]
  18. Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.
  19. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  20. Kavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165–o169. [DOI] [PubMed]
  21. Middleton, W. J. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2788–2795.
  22. Middleton, W. J., Little, E. L., Coffman, D. D. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795–2806.
  23. Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196.
  24. Nakamura, K., Kai, Y., Yasuoka, N. & Kasai, N. (1981). Bull. Chem. Soc. Jpn, 54, 3300–3303.
  25. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  26. Sakanoue, S., Yasuoka, N., Kasai, N. & Kakudo, M. (1971). Bull. Chem. Soc. Jpn, 44, 1–8.
  27. Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271. [DOI] [PubMed]
  28. Setifi, F., Charles, C., Houille, S., Thétiot, T., Triki, S., Gómez-García, C. J. & Pillet, S. (2014). Polyhedron, 61, 242–247.
  29. Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356. [DOI] [PubMed]
  30. Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341. [DOI] [PubMed]
  31. Setifi, Z., Setifi, F., Boughzala, H., Beghidja, A. & Glidewell, C. (2014). Acta Cryst. C70, 465–469. [DOI] [PubMed]
  32. Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13. [DOI] [PMC free article] [PubMed]
  33. Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
  34. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  35. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  36. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  37. Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989015007306/hb7404sup1.cif

e-71-00509-sup1.cif (694.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015007306/hb7404Isup2.hkl

e-71-00509-Isup2.hkl (227.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015007306/hb7404IIsup3.hkl

e-71-00509-IIsup3.hkl (252.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015007306/hb7404Isup4.cml

Supporting information file. DOI: 10.1107/S2056989015007306/hb7404IIsup5.cml

CCDC references: 1059034, 1059033

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES