Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1967 Apr;46(4):506–529. doi: 10.1172/JCI105553

Studies of Cellular Proliferation in Human Leukemia. I. Estimation of Growth Rates of Leukemic and Normal Hematopoietic Cells in Two Adults with Acute Leukemia Given Single Injections of Tritiated Thymidine *

Bayard Clarkson 1,2,3,, Takeshi Ohkita 1,2,3, Kazuo Ota 1,2,3,, Jerrold Fried 1,2,3
PMCID: PMC442035  PMID: 5227717

Abstract

Two adults with rapidly progressive acute myeloblastic and myelomonoblastic leukemia were given single injections of tritiated thymidine, and measurements were made of the growth rates of their leukemic and normal hematopoietic cells by radioautographic methods. Although almost all leukemic blasts in both marrow and blood were metabolically active as shown by their ability to incorporate tritiated uridine and leucine in vitro, only 5.6% and 6.1% of the blasts in the marrow and even fewer in the blood incorporated tritiated thymidine. The mitotic indexes of the marrow blasts were 0.66% and 0.52%; no circulating blasts were dividing. The mean generation times of the actively proliferating blasts were estimated to be 49 and 83 hours. This cannot be equated with the doubling time of the total leukemic population as there is evidence that many blasts fail to continue dividing and die. The mean durations of the phases of the blasts' mitotic cycles were as follows: DNA synthesis (S) = 22 and 19 hours, premitosis (G2) = 3 hours, mitosis (M) = 0.47 and 0.62 hour (minimal estimates), and postmitosis (G1) = 24 and 61 hours. In both patients the maximal mean transit time of the blasts in the blood was 36 hours, and the minimal numbers of actively dividing blasts present were 1.6 and 2.6 × 109 per kg of body weight.

Estimates were also made of the rates of proliferation and maturation of the residual normal erythrocytic and granulocytic cells in these two patients. Although total production was markedly diminished because of reduction in the number of normal elements, the relatively few remaining normal cells appeared to be dividing and maturing at rates that are about the same or only slightly slower than those found in normal subjects.

We conclude that main reason leukemic blasts displace normal hematopoietic precursors in acute leukemia is that the blasts largely fail to differentiate. Many die but many others persist in the marrow and elsewhere as primitive cells and continue to proliferate. As the blasts accumulate, they gradually displace the normal hematopoietic cells, most of which continue their normal course of differentiation and leave the marrow as nondividing mature cells. It is not known why the over-all production of normal cells is not adequately increased to compensate for the anemia, granulocytopenia, and thrombocytopenia that develop, but apparently the leukemic cells somehow interfere with the proliferation or differentiation or both of normal stem cells.

Full text

PDF
506

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABERCROMBIE M., AMBROSE E. J. The surface properties of cancer cells: a review. Cancer Res. 1962 Jun;22:525–548. [PubMed] [Google Scholar]
  2. ABERCROMBIE M., HEAYSMAN J. E., KARTHAUSER H. M. Social behaviour of cells in tissue culture. III. Mutual influence of sarcoma cells and fibroblasts. Exp Cell Res. 1957 Oct;13(2):276–291. doi: 10.1016/0014-4827(57)90007-1. [DOI] [PubMed] [Google Scholar]
  3. BASERGA R., KISIELESKI W. E. Comparative study of the kinetics of cellular proliferation of normal and tumorous tissues with the use of tritiated thymidine. I. Dilution of the label and migration of labeled cells. J Natl Cancer Inst. 1962 Feb;28:331–339. [PubMed] [Google Scholar]
  4. BASERGA R. THE RELATIONSHIP OF THE CELL CYCLE TO TUMOR GROWTH AND CONTROL OF CELL DIVISION: A REVIEW. Cancer Res. 1965 Jun;25:581–595. [PubMed] [Google Scholar]
  5. BERTINO J. R. THE MECHANISM OF ACTION OF THE FOLATE ANTAGONISTS IN MAN. Cancer Res. 1963 Sep;23:1286–1306. [PubMed] [Google Scholar]
  6. BLOCK M., JACOBSON L. O., BETHARD W. F. Preleukemic acute human leukemia. J Am Med Assoc. 1953 Jul 11;152(11):1018–1028. doi: 10.1001/jama.1953.03690110032010. [DOI] [PubMed] [Google Scholar]
  7. BOOTSMA D., BUDKE L., VOS O. STUDIES ON SYNCHRONOUS DIVISION OF TISSUE CULTURE CELLS INITIATED BY EXCESS THYMIDINE. Exp Cell Res. 1964 Jan;33:301–309. doi: 10.1016/s0014-4827(64)81035-1. [DOI] [PubMed] [Google Scholar]
  8. BROCKMAN R. W. BIOCHEMICAL ASPECTS OF MERCAPTOPURINE INHBITION AND RESISTANCE. Cancer Res. 1963 Sep;23:1191–1201. [PubMed] [Google Scholar]
  9. BRYANT B. J. REUTILIZATION OF LYMPHOCYTE DNA BY CELLS OF INTESTINAL CRYPTS AND REGENERATING LIVER. J Cell Biol. 1963 Sep;18:515–523. doi: 10.1083/jcb.18.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. BRYANT B. J. Reutilization of leukocyte DNA by cells of regenerating liver. Exp Cell Res. 1962 Jun;27:70–79. doi: 10.1016/0014-4827(62)90044-7. [DOI] [PubMed] [Google Scholar]
  11. Boll I., Kühn A. Granulocytopoiesis in human bone marrow cultures studied by means of kinematography. Blood. 1965 Oct;26(4):449–470. [PubMed] [Google Scholar]
  12. COHEN E. P., EAGLE H. A simplified chemostat for the growth of mammalian cells: characteristics of cell growth in continuous culture. J Exp Med. 1961 Feb 1;113:467–474. doi: 10.1084/jem.113.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. CRONKITE E. P. ERYTHROPOIETIC CELL PROLIFERATION IN MAN. Medicine (Baltimore) 1964 Nov;43:635–637. doi: 10.1097/00005792-196411000-00005. [DOI] [PubMed] [Google Scholar]
  14. CRONKITE E. P., FLIEDNER T. M. GRANULOCYTOPOIESIS. N Engl J Med. 1964 Jun 25;270:1403–CONCL. doi: 10.1056/NEJM196406252702608. [DOI] [PubMed] [Google Scholar]
  15. Clarkson B., Ota K., Ohkita T., O'Connor A. Kinetics of proliferation of cancer cells in neoplastic effusions in man. Cancer. 1965 Oct;18(10):1189–1213. doi: 10.1002/1097-0142(196510)18:10<1189::aid-cncr2820181002>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  16. Cleaver J. E. The relationship between the duration of the S phase and the fraction of cells which incorporate 3-H-thymidine during exponential growth. Exp Cell Res. 1965 Sep;39(2):697–700. doi: 10.1016/0014-4827(65)90074-1. [DOI] [PubMed] [Google Scholar]
  17. DAVIS B. D. The teleonomic significance of biosynthetic control mechanisms. Cold Spring Harb Symp Quant Biol. 1961;26:1–10. doi: 10.1101/sqb.1961.026.01.005. [DOI] [PubMed] [Google Scholar]
  18. DIDERHOLM H., FICHTELIUS K. E., LINDER O. Availability time of 3H-label after administration of 3H-thymidine in vivo. Exp Cell Res. 1962 Sep;27:431–435. doi: 10.1016/0014-4827(62)90008-3. [DOI] [PubMed] [Google Scholar]
  19. EAGLE H. METABOLIC CONTROLS IN CULTURED MAMMALIAN CELLS. Science. 1965 Apr 2;148(3666):42–51. doi: 10.1126/science.148.3666.42. [DOI] [PubMed] [Google Scholar]
  20. EDWARDS J. L., KOCH A. L., YOUCIS P., FREESE H. L., LAITE M. B., DONALSON J. T. Some characteristics of DNA synthesis and the mitotic cycle in Ehrlich ascites tumor cells. J Biophys Biochem Cytol. 1960 Apr;7:273–282. doi: 10.1083/jcb.7.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. FEINENDEGEN L. E., BOND V. P., CRONKITE E. P., HUGHES W. L. RNA TURNOVER IN NORMAL RAT BONE MARROW. Ann N Y Acad Sci. 1964 Feb 28;113:727–741. doi: 10.1111/j.1749-6632.1964.tb40700.x. [DOI] [PubMed] [Google Scholar]
  22. FLIEDNER T. M., CRONKITE E. P., KILLMANN S. A., BOND V. P. GRANULOCYTOPOIESIS. II. EMERGENCE AND PATTERN OF LABELING OF NEUTROPHILIC GRANULOCYTES IN HUMANS. Blood. 1964 Dec;24:683–700. [PubMed] [Google Scholar]
  23. FLIEDNER T. M., CRONKITE E. P., ROBERTSON J. S. GRANULOCYTOPOIESIS. I. SENESCENCE AND RANDOM LOSS OF NEUTROPHILIC GRANULOCYTES IN HUMAN BEINGS. Blood. 1964 Oct;24:402–414. [PubMed] [Google Scholar]
  24. FRIEDKIN M., GOLDIN A. The use of dihydrofolate reductase in studies of mixed populations of sensitive and resistant leukemic cells. Cancer Res. 1962 Jun;22:607–616. [PubMed] [Google Scholar]
  25. Frei E., 3rd, Freireich E. J. Progress and perspectives in the chemotherapy of acute leukemia. Adv Chemother. 1965;2:269–298. doi: 10.1016/b978-1-4831-9930-6.50011-3. [DOI] [PubMed] [Google Scholar]
  26. GARDER K. H., DEVIK F. Studies on the incorporation of tritiated thymidine in desoxyribonucleic acid in mouse tissues and on its radiation effects. Int J Radiat Biol Relat Stud Phys Chem Med. 1963 Feb;6:157–172. doi: 10.1080/09553006314550161. [DOI] [PubMed] [Google Scholar]
  27. GAVOSTO F., MARAINI G., PILERI A. Nucleic acids and protein metabolism in acute leukemia cells. Blood. 1960 Nov;16:1555–1563. [PubMed] [Google Scholar]
  28. GAVOSTO F., PILERI A., BACHI C., PEGORARO L. PROLIFERATION AND MATURATION DEFECT IN ACUTE LEUKAEMIA CELLS. Nature. 1964 Jul 4;203:92–94. doi: 10.1038/203092a0. [DOI] [PubMed] [Google Scholar]
  29. GAVOSTO F., PILERI A., PEGORARO L., MOMIGLIANO A. IN VIVO INCORPORATION OF TRITIATED THYMIDINE IN ACUTE LEUKAEMIS CHROMOSOMES. Nature. 1963 Nov 23;200:807–809. doi: 10.1038/200807a0. [DOI] [PubMed] [Google Scholar]
  30. GENTRY G. A., MORSE P. A., Jr, IVES D. H., GEBERT R., POTTER V. R. PYRIMIDINE METABOLISM IN TISSUE CULTURE CELLS DERIVED FROM RAT HEPATOMAS. II. THYMIDINE UPTAKE IN SUSPENSION CULTURES DERIVED FROM THE NOVIKOFF HEPATOMA. Cancer Res. 1965 May;25:509–516. [PubMed] [Google Scholar]
  31. GENTRY G. A., MORSE P. A., Jr, POTTER V. R. PYRIMIDINE METABOLISM IN TISSUE CULTURE CELLS DERIVED FROM RAT HEPATOMAS. 3. RELATIONSHIP OF THYMIDINE TO THE METABOLISM OF OTHER PYRIMIDINE NUCLEOSIDES IN SUSPENSION CULTURES DERIVED FROM THE NOVIKOFF HEPATOMA. Cancer Res. 1965 May;25:517–525. [PubMed] [Google Scholar]
  32. GOLDIN A., VENDITTI J. M., HUMPHREYS S. R., MANTEL N. Influence of the concentration of leukemic inoculum on the effectiveness of treatment. Science. 1956 May 11;123(3202):840–840. doi: 10.1126/science.123.3202.840. [DOI] [PubMed] [Google Scholar]
  33. GREGERSEN M. I., RAWSON R. A. Blood volume. Physiol Rev. 1959 Apr;39(2):307–342. doi: 10.1152/physrev.1959.39.2.307. [DOI] [PubMed] [Google Scholar]
  34. GREULICH R. C., CAMERON I. L., THRASHER J. D. Stimulation of mitosis in adult mice by administration of thymidine. Proc Natl Acad Sci U S A. 1961 Jun 15;47:743–748. doi: 10.1073/pnas.47.6.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. GRISHAM J. W. Inhibitory effect of tritiated thymidine on regeneration of the liver in the young rat. Proc Soc Exp Biol Med. 1960 Dec;105:555–558. doi: 10.3181/00379727-105-26174. [DOI] [PubMed] [Google Scholar]
  36. HOWARD A., DEWEY D. L. Non-uniformity of labelling rate during DNA synthesis. Exp Cell Res. 1961 Sep;24:623–624. doi: 10.1016/0014-4827(61)90471-2. [DOI] [PubMed] [Google Scholar]
  37. Hughes W. L., Bond V. P., Brecher G., Cronkite E. P., Painter R. B., Quastler H., Sherman F. G. CELLULAR PROLIFERATION IN THE MOUSE AS REVEALED BY AUTORADIOGRAPHY WITH TRITIATED THYMIDINE. Proc Natl Acad Sci U S A. 1958 May;44(5):476–483. doi: 10.1073/pnas.44.5.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. JOHNSON H. A., HAYMAKER W. E., RUBINI J. R., FLIEDNER T. M., BOND V. P., CRONKITE E. P., HUGHES W. L. A radioautographic study of a human brain and glioblastoma multiforme after the in vivo uptake of tritiated thymidine. Cancer. 1960 May-Jun;13:636–642. doi: 10.1002/1097-0142(196005/06)13:3<636::aid-cncr2820130328>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  39. JOHNSON R. E., ZELEN M., KEMP N. H. CHEMOTHERAPEUTIC EFFECTS ON MAMMALIAN TUMOR CELLS. I. MODIFICATION OF LEUKEMIA L1210 GROWTH KINETICS AND KARYOTYPE WITH AN ALKYLATING AGENT. J Natl Cancer Inst. 1965 Feb;34:277–290. doi: 10.1093/jnci/34.2.277. [DOI] [PubMed] [Google Scholar]
  40. KILLMANN S. A., CRONKITE E. P., FLIEDNER T. M., BOND V. P. Cell proliferation in multiple myeloma studied with tritiated thymidine in vivo. Lab Invest. 1962 Oct;11:845–853. [PubMed] [Google Scholar]
  41. KILLMANN S. A., CRONKITE E. P., FLIEDNER T. M., BOND V. P. MITOTIC INDICES OF HUMAN BONE MARROW CELLS. 3. DURATION OF SOME PHASES OF ERYTHROCYTIC AND GRANULOCYTIC PROLIFERATION COMPUTED FROM MITOTIC INDICES. Blood. 1964 Sep;24:267–280. [PubMed] [Google Scholar]
  42. KILLMANN S. A., CRONKITE E. P., FLIEDNER T. M., BOND V. P. Mitotic indices of human bone marrow cells. I. Number and cytologic distribution of mitoses. Blood. 1962 Jun;19:743–750. [PubMed] [Google Scholar]
  43. KILLMANN S. A., CRONKITE E. P., ROBERTSON J. S., FLIEDNER T. M., BOND V. P. Estimation of phases of the life cycle of leukemic cells from labeling in human beings in vivo with tritiated thymidine. Lab Invest. 1963 Jul;12:671–684. [PubMed] [Google Scholar]
  44. Killmann S. A. Proliferative activity of blast cells in leukemia and myelofibrosis. Morphological differences between proliferating and non-proliferating blast cells. Acta Med Scand. 1965 Sep;178(3):263–280. doi: 10.1111/j.0954-6820.1965.tb04271.x. [DOI] [PubMed] [Google Scholar]
  45. LAJTHA L. G., OLIVER R. The application of autoradiography in the study of nucleic acid metabolism. Lab Invest. 1959 Jan-Feb;8(1):214–224. [PubMed] [Google Scholar]
  46. LAJTHA L. G. RECENT STUDIES IN ERYTHROID DIFFERENTIATION AND PROLIFERATION. Medicine (Baltimore) 1964 Nov;43:625–653. doi: 10.1097/00005792-196411000-00004. [DOI] [PubMed] [Google Scholar]
  47. LALA P. K., MALONEY M. A., PATT H. M. A COMPARISON OF TWO MARKERS OF CELL PROLIFERATION IN BONE MARROW. Acta Haematol. 1964 Jan;31:1–8. doi: 10.1159/000209609. [DOI] [PubMed] [Google Scholar]
  48. LALA P. K., MALONEY M. A., PATT H. M. MEASUREMENT OF DNA-SYNTHESIS TIME IN MYELOID-ERYTHROID PRECURSORS. Exp Cell Res. 1965 Jun;38:626–634. doi: 10.1016/0014-4827(65)90386-1. [DOI] [PubMed] [Google Scholar]
  49. LEVINE E. M., BECKER Y., BOONE C. W., EAGLE H. CONTACT INHIBITION, MACROMOLECULAR SYNTHESIS, AND POLYRIBOSOMES IN CULTURED HUMAN DIPLOID FIBROBLASTS. Proc Natl Acad Sci U S A. 1965 Feb;53:350–356. doi: 10.1073/pnas.53.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. MAUER A. M. CHARACTERISTICS OF CELL PROLIFERATION IN A PATIENT WITH ACUTE LEUKAEMIA. Lancet. 1964 Sep 26;2(7361):675–676. doi: 10.1016/s0140-6736(64)92484-5. [DOI] [PubMed] [Google Scholar]
  51. MAUER A. M., FISHER V. Comparison of the proliferative capacity of acute leukaemia cells in bone marrow and blood. Nature. 1962 Mar 17;193:1085–1086. doi: 10.1038/1931085a0. [DOI] [PubMed] [Google Scholar]
  52. MAUER A. M., FISHER V. In vivo study of cell kinetics in acute leukaemia. Nature. 1963 Feb 9;197:574–576. doi: 10.1038/197574a0. [DOI] [PubMed] [Google Scholar]
  53. MAURI C. DNA synthesis and mitotic rate in leukaemic cells. Cancro. 1962;15:145–148. [PubMed] [Google Scholar]
  54. MEACHAM G. C., WEISBERGER A. S. Early atypical manifestations of leukemia. Ann Intern Med. 1954 Oct;41(4):780–797. doi: 10.7326/0003-4819-41-4-780. [DOI] [PubMed] [Google Scholar]
  55. MORRIS N. R., FISCHER G. A. Studies concerning inhibition of the synthesis of deoxycytidine by phosphorylated derivatives of thymidine. Biochim Biophys Acta. 1960 Jul 29;42:183–184. doi: 10.1016/0006-3002(60)90777-0. [DOI] [PubMed] [Google Scholar]
  56. Mauer A. M., Athens J. W., Ashenbrucker H., Cartwright G. E., Wintrobe M. M. LEUKOKINETIC STUDIES. II. A METHOD FOR LABELING GRANULOCYTES IN VITRO WITH RADIOACTIVE DIISOPROPYLFLUOROPHOSPHATE (DFP). J Clin Invest. 1960 Sep;39(9):1481–1486. doi: 10.1172/JCI104167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. NEWTON A. A., WILDY P. Parasynchronous division of HeLa cells. Exp Cell Res. 1959 Mar;16(3):624–635. doi: 10.1016/0014-4827(59)90130-2. [DOI] [PubMed] [Google Scholar]
  58. OLDFIELD F. E. Orientation behavior of chick leucocytes in tissue culture and their interactions with fibroblasts. Exp Cell Res. 1963 Mar;30:125–138. doi: 10.1016/0014-4827(63)90219-2. [DOI] [PubMed] [Google Scholar]
  59. OSGOOD E. E. Number and distribution of human hemic cells. Blood. 1954 Dec;9(12):1141–1154. [PubMed] [Google Scholar]
  60. PAINTER R. B., DREW R. M., GIAUQUE B. G. Further studies on deoxyribonucleic acid metabolism in mammalian cell cultures. Exp Cell Res. 1960 Oct;21:98–105. doi: 10.1016/0014-4827(60)90350-5. [DOI] [PubMed] [Google Scholar]
  61. PAINTER R. B., DREW R. M. Studies on deoxyribonucleic acid metabolism in human cancer cell cultures (HeLa). I. The temporal relationships of deoxyribonucleic acid synthesis to mitosis and turnover time. Lab Invest. 1959 Jan-Feb;8(1):278–285. [PubMed] [Google Scholar]
  62. PARDEE A. B., YATES R. A. Control of pyrimidine biosynthesis in Escherichia coli by a feed-back mechanism. J Biol Chem. 1956 Aug;221(2):757–770. [PubMed] [Google Scholar]
  63. PATT H. M. A consideration of myeloid-erythroid balance in man. Blood. 1957 Sep;12(9):777–787. [PubMed] [Google Scholar]
  64. PENINGTON D. G. The role of the erythropoietic hormone in anaemia. Lancet. 1961 Feb 11;1(7172):301–306. doi: 10.1016/s0140-6736(61)91477-5. [DOI] [PubMed] [Google Scholar]
  65. QUASTLER H., SHERMAN F. G. Cell population kinetics in the intestinal epithelium of the mouse. Exp Cell Res. 1959 Jun;17(3):420–438. doi: 10.1016/0014-4827(59)90063-1. [DOI] [PubMed] [Google Scholar]
  66. REISNER E. H., Jr The nature and significance of megaloblastic blood formation. Blood. 1958 Apr;13(4):313–338. [PubMed] [Google Scholar]
  67. RIEKE W. O. The in vivo reutilization of lymphocytic and sarcoma DNA by cells growing in the peritoneal cavity. J Cell Biol. 1962 May;13:205–216. doi: 10.1083/jcb.13.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. ROBINSON S. H., BRECHER G. DELAYED INCORPORATION OF TRITIATED THYMIDINE INTO DNA. Science. 1963 Oct 18;142(3590):392–393. doi: 10.1126/science.142.3590.392. [DOI] [PubMed] [Google Scholar]
  69. RUBINI J. R., CRONKITE E. P., BOND V. P., FLIEDNER T. M. The metabolism and fate of tritiated thymidine in man. J Clin Invest. 1960 Jun;39:909–918. doi: 10.1172/JCI104111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. SHELTON E. EFFECT OF TUMOR CELLS ON PRE-EXISTING COLLAGEN AND ON COLLAGEN PRODUCTION BY NORMAL CELLS GROWN IN DIFFUSION CHAMBERS. J Natl Cancer Inst. 1964 Mar;32:709–721. [PubMed] [Google Scholar]
  71. SKIPPER H. E. PERSPECTIVES IN CANCER CHEMOTHERAPY: THERAPEUTIC DESIGN. Cancer Res. 1964 Sep;24:1295–1302. [PubMed] [Google Scholar]
  72. SKIPPER H. E., SCHABEL F. M., Jr, WILCOX W. S. EXPERIMENTAL EVALUATION OF POTENTIAL ANTICANCER AGENTS. XIII. ON THE CRITERIA AND KINETICS ASSOCIATED WITH "CURABILITY" OF EXPERIMENTAL LEUKEMIA. Cancer Chemother Rep. 1964 Feb;35:1–111. [PubMed] [Google Scholar]
  73. STANNERS C. P., TILL J. E. DNA synthesis in individual L-strain mouse cells. Biochim Biophys Acta. 1960 Jan 29;37:406–419. doi: 10.1016/0006-3002(60)90496-0. [DOI] [PubMed] [Google Scholar]
  74. Stryckmans P., Cronkite E. P., Fache J., Fliedner T. M., Ramos J. Deoxyribonucleic acid synthesis time of erythropoietic and granulopoietic cells in human beings. Nature. 1966 Aug 13;211(5050):717–720. doi: 10.1038/211717a0. [DOI] [PubMed] [Google Scholar]
  75. TERASIMA T., TOLMACH L. J. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp Cell Res. 1963 Apr;30:344–362. doi: 10.1016/0014-4827(63)90306-9. [DOI] [PubMed] [Google Scholar]
  76. THORLING E. B. ERYTHROPOIETIN IN SERUM FROM PATIENTS WITH LEUCOSIS. ASSAYS IN STARVED RATS. Scand J Haematol. 1965;2:36–51. doi: 10.1111/j.1600-0609.1965.tb01277.x. [DOI] [PubMed] [Google Scholar]
  77. TROUP S. B., SWISHER S. N., YOUNG L. E. The anemia of leukemia. Am J Med. 1960 May;28:751–763. doi: 10.1016/0002-9343(60)90132-7. [DOI] [PubMed] [Google Scholar]
  78. VAN DYKE D. C., LAYRISSE M., LAWRENCE J. H., GARCIA J. F., POLLYCOVE M. Relation between severity of anemia and erythropoietin titer in human beings. Blood. 1961 Aug;18:187–201. [PubMed] [Google Scholar]
  79. VENDITTI J. M., GOLDIN A. CHEMOTHERAPY OF ADVANCED MOUSE LEUKEMIA L1210: COMPARISON OF METHOTREXATE ALONE AND IN SEQUENTIAL THERAPY. Cancer Res. 1964 Sep;24:1457–1460. [PubMed] [Google Scholar]
  80. WERKHEISER W. C. THE BIOCHEMICAL, CELLULAR, AND PHARMACOLOGICAL ACTION AND EFFECTS OF THE FOLIC ACID ANTAGONISTS. Cancer Res. 1963 Sep;23:1277–1285. [PubMed] [Google Scholar]
  81. WILLIAMS M. J. Myeloblastic leukemia preceded by prolonged hematologic disorder. Blood. 1955 May;10(5):502–509. [PubMed] [Google Scholar]
  82. WIMBER D. E. Asynchronous replication of deoxyribonucleic acid in root tip chromosomes of Tradescantia paludosa. Exp Cell Res. 1961 Mar;23:402–407. doi: 10.1016/0014-4827(61)90048-9. [DOI] [PubMed] [Google Scholar]
  83. XEROS N. Deoxyriboside control and synchronization of mitosis. Nature. 1962 May 19;194:682–683. doi: 10.1038/194682a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES