Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1971 Aug;50(8):1666–1677. doi: 10.1172/JCI106656

The Protein and Lipid Composition of Arterial Elastin and Its Relationship to Lipid Accumulation in the Atherosclerotic Plaque

Dieter M Kramsch 1,2, Carl Franzblau 1,2, William Hollander 1,2
PMCID: PMC442067  PMID: 5097573

Abstract

Elastin preparations from intimal layers and the media of normal and atherosclerotic human aortae were analyzed for protein and lipid content. In atherosclerotic aortae, elastin from plaques was compared with elastin from adjacent normal appearing areas of the same aorta.

Arterial elastin purified by alkaline extraction appeared to be a protein-lipid complex containing free and ester cholesterol, phospholipids, and triglycerides. The lipid component of normal arterial elastin was small (1-2%). With increasing severity of atherosclerosis, there was a progressive accumulation of lipid in intimal elastin from plaques, reaching a mean lipid content of 37% in severe plaques. The increase in the lipid content of plaque elastic preparations was mainly due to large increases in cholesterol, over 80% of which was cholesteryl ester. This deposition of cholesterol in plaque elastin accounted for 20-34% of the total cholesterol content of the plaque. The increased lipid deposition in plaque elastin was associated with alterations in the amino acid composition of plaque elastin. In elastin from plaque intima, the following polar amino acids were increased significantly: aspartic acid, threonine, serine, glutamic acid, lysine, histidine, and arginine; whereas, cross-linking amino acids: desmosine, isodesmosine, and lysinonorleucine were decreased significantly. The amino acid and lipid composition of elastin from normal appearing aortic areas was comparable to that of normal arterial elastin except for intimal elastin directly adjacent to and medial elastin directly below the most severe plaques.

The data indicate that the focal lipid deposition in early atherosclerotic plaques is due to a large extent to lipid accumulations in altered elastin protein of localized intimal areas. Continued lipid deposition in altered elastin appears to contribute substantially to the progressive lipid accumulation in the plaque. The study suggests that elastin of intimal elastic membranes may play an important role in the pathogenesis and progression of atherosclerosis.

Full text

PDF
1666

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADAMS C. W., TUQAN N. A. Elastic degeneration as source of lipids in the early lesion of atherosclerosis. J Pathol Bacteriol. 1961 Jul;82:131–139. doi: 10.1002/path.1700820116. [DOI] [PubMed] [Google Scholar]
  2. AMINOFF D. Methods for the quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids. Biochem J. 1961 Nov;81:384–392. doi: 10.1042/bj0810384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BOAS N. F. Method for the determination of hexosamines in tissues. J Biol Chem. 1953 Oct;204(2):553–563. [PubMed] [Google Scholar]
  4. BOGREN H., LARSSON K. AN X-RAY-DIFFRACTION STUDY OF CRYSTALLINE CHOLESTEROL IN SOME PATHOLOGICAL DEPOSITS IN MAN. Biochim Biophys Acta. 1963 Jul 23;75:65–69. doi: 10.1016/0006-3002(63)90580-8. [DOI] [PubMed] [Google Scholar]
  5. Balis J. U., Chan A. S., Conen P. E. Lathyrogenic injury to foetal rat aorta and postnatal repair. Exp Mol Pathol. 1966 Aug;5(4):396–412. doi: 10.1016/0014-4800(66)90042-6. [DOI] [PubMed] [Google Scholar]
  6. Barnes M. J., Partridge S. M. The isolation and characterization of a glycoprotein from human thoracic aorta. Biochem J. 1968 Oct;109(5):883–896. doi: 10.1042/bj1090883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CHOBANIAN A. V., HOLLANDER W. Body cholesterol metabolism in man. I. The equilibration of serum and tissue cholesterol. J Clin Invest. 1962 Sep;41:1732–1737. doi: 10.1172/JCI104631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carnes W. H., Coulson W. F., Albino A. M. Intimal lesions in muscular arteries of young copper-deficient swine. Ann N Y Acad Sci. 1965 Sep 8;127(1):800–810. doi: 10.1111/j.1749-6632.1965.tb49445.x. [DOI] [PubMed] [Google Scholar]
  9. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  10. FRIEDMAN M. PATHOGENESIS OF THE SPONTANEOUS ATHEROSCLEROTIC PLAQUE. A STUDY ON THE A/FRIEDMAN M: PATHOGENESIS OF THE SPONTANEOUS ATHEROSCLEROTIC PLAQUE. A STUDY ON THE CHOLESTEROL-FED RABBIT. Arch Pathol. 1963 Sep;76:318–329. [PubMed] [Google Scholar]
  11. Franzblau C., Faris B., Papaioannou R. Lysinonorleucine. A new amino acid from hydrolysates of elastin. Biochemistry. 1969 Jul;8(7):2833–2837. doi: 10.1021/bi00835a021. [DOI] [PubMed] [Google Scholar]
  12. GOTTE L., STERN P., ELSDEN D. F., PARTRIDGE S. M. The chemistry of connective tissues. 8. The composition of elastin from three bovine tissues. Biochem J. 1963 May;87:344–351. doi: 10.1042/bj0870344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gross L., Epstein E. Z., Kugel M. A. Histology of the Coronary Arteries and their Branches in the Human Heart. Am J Pathol. 1934 Mar;10(2):253–274.7. [PMC free article] [PubMed] [Google Scholar]
  14. HALL D. A. The reaction between elastase and elastic tissue. 1. The substrate. Biochem J. 1955 Mar;59(3):459–465. doi: 10.1042/bj0590459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kim C. S., Hill C. H. The interrelationship of dietary copper and amine oxidase in the formation of elastin. Biochem Biophys Res Commun. 1966 Aug 12;24(3):395–400. doi: 10.1016/0006-291x(66)90171-9. [DOI] [PubMed] [Google Scholar]
  16. Kramsch D. M., Gore I., Hollander W. The distribution of intravenously administered [3H] cholesterol in the arteries and other tissues. 2. Radioautographic findings. J Atheroscler Res. 1967 Jul-Aug;7(4):501–516. doi: 10.1016/s0368-1319(67)80027-9. [DOI] [PubMed] [Google Scholar]
  17. Kramsch D. M., Hollander W. Occlusive atheroslcerotic disease of the coronary arteries in monkey (Macaca irus) induced by diet. Exp Mol Pathol. 1968 Aug;9(1):1–22. doi: 10.1016/0014-4800(68)90045-2. [DOI] [PubMed] [Google Scholar]
  18. LABELLA F. S. Elastin, metabolically active lipoprotein. Nature. 1957 Dec 14;180(4598):1360–1361. doi: 10.1038/1801360a0. [DOI] [PubMed] [Google Scholar]
  19. LANSING A. I., ALEX M., ROSENTHAL T. B. Atheromatosis as a sequel to senescent changes in the arterial wall. J Gerontol. 1950 Oct;5(1-4):314–318. doi: 10.1093/geronj/5.4.314. [DOI] [PubMed] [Google Scholar]
  20. LANSING A. I., ROBERTS E., RAMASARMA G. B., ROSENTHAL T. B., ALEX M. Changes with age in amino acid composition of arterial elastin. Proc Soc Exp Biol Med. 1951 Apr;76(4):714–717. doi: 10.3181/00379727-76-18604. [DOI] [PubMed] [Google Scholar]
  21. LANSING A. I., ROSENTHAL T. B., ALEX M., DEMPSEY E. W. The structure and chemical characterization of elastic fibers as revealed by elastase and by electron microscopy. Anat Rec. 1952 Dec;114(4):555–575. doi: 10.1002/ar.1091140404. [DOI] [PubMed] [Google Scholar]
  22. LINDSAY S., CHAIKOFF I. L. ARTERIOSCLEROSIS IN THE OSTRICH, RHEA, AND EMU: NATURALLY OCCURRING LESIONS OF THE AORTAS AND CORONARY ARTERIES. Arch Pathol. 1965 Apr;79:379–387. [PubMed] [Google Scholar]
  23. LINDSAY S., CHAIKOFF I. L. Arteriosclerosis in the baboon; naturally occurring lesions in the aorta and coronary and iliac arteries. AMA Arch Pathol. 1957 May;63(5):460–471. [PubMed] [Google Scholar]
  24. LaBella F. S., Vivian S., Thornhill D. P. Amino acid composition of human aortic elastin as influenced by age. J Gerontol. 1966 Oct;21(4):550–555. doi: 10.1093/geronj/21.4.550. [DOI] [PubMed] [Google Scholar]
  25. Lalich J. J., Ishida K. Alteration in elastin and orientation of collagen in angiolathyrism. Arch Pathol. 1966 Aug;82(2):129–137. [PubMed] [Google Scholar]
  26. MCCALLUM H. M. EXPERIMENTAL LATHYRISM IN MICE. J Pathol Bacteriol. 1965 Apr;89:625–636. doi: 10.1002/path.1700890223. [DOI] [PubMed] [Google Scholar]
  27. MOON H. D. Coronary arteries in fetuses, infants, and juveniles. Circulation. 1957 Aug;16(2):263–267. doi: 10.1161/01.cir.16.2.263. [DOI] [PubMed] [Google Scholar]
  28. MOON H. D., RINEHART J. F. Histogenesis of coronary arteriosclerosis. Circulation. 1952 Oct;6(4):481–488. doi: 10.1161/01.cir.6.4.481. [DOI] [PubMed] [Google Scholar]
  29. McCullagh K., Lewis M. G. Spontaneous arteriosclerosis in the wild African elephant. Its relation to the disease in man. Lancet. 1967 Sep 2;2(7514):492–495. doi: 10.1016/s0140-6736(67)91657-1. [DOI] [PubMed] [Google Scholar]
  30. Miller E. J., Martin G. R., Mecca C. E., Piez K. A. The biosynthesis of elastin cross-links. The effect of copper deficiency and a lathyrogen. J Biol Chem. 1965 Sep;240(9):3623–3627. [PubMed] [Google Scholar]
  31. Miller E. J., Pinnell S. R., Martin G. R., Schiffmann E. Investigation of the nature of the intermediates involved in desmosine biosynthesis. Biochem Biophys Res Commun. 1967 Jan 23;26(2):132–137. doi: 10.1016/0006-291x(67)90224-0. [DOI] [PubMed] [Google Scholar]
  32. Moczar M., Robert L. Extraction and fractzonation of the media of the thoracic aorta: isolation and characterization of structural glycoproteins. Atherosclerosis. 1970 Jan-Feb;11(1):7–25. doi: 10.1016/0021-9150(70)90004-3. [DOI] [PubMed] [Google Scholar]
  33. NAGAI Y., GROSS J., PIEZ K. A. DISC ELECTROPHORESIS OF COLLAGEN COMPONENTS. Ann N Y Acad Sci. 1964 Dec 28;121:494–500. doi: 10.1111/j.1749-6632.1964.tb14221.x. [DOI] [PubMed] [Google Scholar]
  34. O'Dell B. L., Elsden D. F., Thomas J., Partridge S. M., Smith R. H., Palmer R. Inhibition of the biosynthesis of the cross-links in elastin by a lathyrogen. Nature. 1966 Jan 22;209(5021):401–402. doi: 10.1038/209401a0. [DOI] [PubMed] [Google Scholar]
  35. Parker F. An Electron Microscopic Study of Experimental Atherosclerosis. Am J Pathol. 1960 Jan;36(1):19–53. [PMC free article] [PubMed] [Google Scholar]
  36. Partridge S. M. Biosynthesis and nature of elastin structures. Fed Proc. 1966 May-Jun;25(3):1023–1029. [PubMed] [Google Scholar]
  37. Pinnell S. R., Martin G. R., Miller E. J. Desmosine biosynthesis: nature of inhibition by D-penicillamine. Science. 1968 Aug 2;161(3840):475–476. doi: 10.1126/science.161.3840.475. [DOI] [PubMed] [Google Scholar]
  38. SCHLANT R. C., GALAMBOS J. T. AUTORADIOGRAPHIC DEMONSTRATION OF INGESTED CHOLESTEROL-4-C-14 IN THE NORMAL AND ATHEROMATOUS AORTA. Am J Pathol. 1964 Jun;44:877–887. [PMC free article] [PubMed] [Google Scholar]
  39. SIMPSON C. F., HARMS R. H. PATHOLOGY OF THE AORTA OF CHICKS FED A COPPER-DEFICIENT DIET. Exp Mol Pathol. 1964 Aug;17:390–400. doi: 10.1016/0014-4800(64)90010-3. [DOI] [PubMed] [Google Scholar]
  40. SMITHIES O. Zone electrophoresis in starch gels and its application to studies of serum proteins. Adv Protein Chem. 1959;14:65–113. doi: 10.1016/s0065-3233(08)60609-9. [DOI] [PubMed] [Google Scholar]
  41. SVENNERHOLM L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta. 1957 Jun;24(3):604–611. doi: 10.1016/0006-3002(57)90254-8. [DOI] [PubMed] [Google Scholar]
  42. Sandberg L. B., Weissman N., Smith D. W. The purification and partial characterization of a soluble elastin-like protein from copper-deficient porcine aorta. Biochemistry. 1969 Jul;8(7):2940–2945. doi: 10.1021/bi00835a037. [DOI] [PubMed] [Google Scholar]
  43. Smith E. B., Evans P. H., Downham M. D. Lipid in the aortic intima. The correlation of morphological and chemical characteristics. J Atheroscler Res. 1967 Mar-Apr;7(2):171–186. doi: 10.1016/s0368-1319(67)80079-6. [DOI] [PubMed] [Google Scholar]
  44. VAN HANDEL E., ZILVERSMIT D. B. Micromethod for the direct determination of serum triglycerides. J Lab Clin Med. 1957 Jul;50(1):152–157. [PubMed] [Google Scholar]
  45. WALKER D. G., WIRTSCHAFTER Z. T. Histopathogenesis of aortic aneurysms in the Lathyrus-fed rat. AMA Arch Pathol. 1956 Feb;61(2):125–135. [PubMed] [Google Scholar]
  46. WHEREAT A. F., STAPLE E. The preparation of serum lipoproteins labeled with radioactive cholesterol. Arch Biochem Biophys. 1960 Oct;90:224–228. doi: 10.1016/0003-9861(60)90571-3. [DOI] [PubMed] [Google Scholar]
  47. ZUGIBE F. T., BROWN K. D. Histochemical studies in atherogenesis: human aortas. Circ Res. 1960 Jan;8:287–295. doi: 10.1161/01.res.8.1.287. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES