Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jul 5;91(14):6398–6402. doi: 10.1073/pnas.91.14.6398

Mevalonate-mediated suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase function in alpha-toxin-perforated cells.

M D Giron 1, C M Havel 1, J A Watson 1
PMCID: PMC44209  PMID: 8022795

Abstract

The regulation of mevalonic acid synthesis requires both nonsterol isopentenoid and sterol regulatory signal molecules. A primary target of this multivalent control process is the enzyme which catalyzes mevalonate synthesis: 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34). In this report Staphylococcus aureus alpha-toxin perforated Chinese hamster ovary cells were used to facilitate the identification of isopentenoidogenic reactions and metabolites required for mevalonate-mediated loss of HMG-CoA reductase activity. alpha-Toxin-perforated cells retained the capacity to decrease, upon demand, HMG-CoA reductase activity and protein in response to mevalonate or isopentenoid pyrophosphate esters. Also, it was deduced with highly specific metabolic inhibitors, that conversion of farnesyl 1-diphosphate to squalene was required for mevalonate-mediated suppression of reductase activity. Since squalene (2 microM) did not downregulate reductase activity, pre-squalene pyrophosphate or a derivative, or polyprenyl-1-pyrophosphate-generated inorganic pyrophosphate, or a combination of these metabolites are proposed as candidate regulatory nonsterol isopentenoid signal molecules.

Full text

PDF
6398

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahnert-Hilger G., Mach W., Föhr K. J., Gratzl M. Poration by alpha-toxin and streptolysin O: an approach to analyze intracellular processes. Methods Cell Biol. 1989;31:63–90. doi: 10.1016/s0091-679x(08)61602-7. [DOI] [PubMed] [Google Scholar]
  2. Arebalo R. E., Tormanen C. D., Hardgrave J. E., Noland B. J., Scallen T. J. In vivo regulation of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase: immunotitration of the enzyme after short-term mevalonate or cholesterol feeding. Proc Natl Acad Sci U S A. 1982 Jan;79(1):51–55. doi: 10.1073/pnas.79.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beckers C. J., Keller D. S., Balch W. E. Semi-intact cells permeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell. 1987 Aug 14;50(4):523–534. doi: 10.1016/0092-8674(87)90025-0. [DOI] [PubMed] [Google Scholar]
  4. Beirne O. R., Heller R., Watson J. A. Regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase in minimal deviation hepatoma 7288C. Immunological measurements in hepatoma tissue culture cells. J Biol Chem. 1977 Feb 10;252(3):950–954. [PubMed] [Google Scholar]
  5. Bradfute D. L., Silva C. J., Simoni R. D. Squalene synthase-deficient mutant of Chinese hamster ovary cells. J Biol Chem. 1992 Sep 15;267(26):18308–18314. [PubMed] [Google Scholar]
  6. Brown K., Havel C. M., Watson J. A. Isoprene synthesis in isolated embryonic Drosophila cells. II. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. J Biol Chem. 1983 Jul 10;258(13):8512–8518. [PubMed] [Google Scholar]
  7. Brown M. S., Goldstein J. L. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res. 1980 Jul;21(5):505–517. [PubMed] [Google Scholar]
  8. Burchell A. Molecular pathology of glucose-6-phosphatase. FASEB J. 1990 Sep;4(12):2978–2988. doi: 10.1096/fasebj.4.12.2168325. [DOI] [PubMed] [Google Scholar]
  9. Corey E. J., Ortiz de Montellano P. R., Lin K., Dean P. D. 2,3-iminosqualene, a potent inhibitor of the enzymic cyclization of 2,3-oxidosqualene to sterols. J Am Chem Soc. 1967 May 24;89(11):2797–2798. doi: 10.1021/ja00987a089. [DOI] [PubMed] [Google Scholar]
  10. Crissman H. A., Steinkamp J. A. Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. J Cell Biol. 1973 Dec;59(3):766–771. doi: 10.1083/jcb.59.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edwards P. A., Ashby M. N., Spear D. H., Marrero P. F., Joly A., Popják G. Polyisoprenoid synthesis and metabolism. Biochem Soc Trans. 1992 May;20(2):475–479. doi: 10.1042/bst0200475. [DOI] [PubMed] [Google Scholar]
  12. Faust J., Krieger M. Expression of specific high capacity mevalonate transport in a Chinese hamster cell variant. J Biol Chem. 1987 Feb 15;262(5):1996–2004. [PubMed] [Google Scholar]
  13. Giron M. D., Havel C. M., Watson J. A. Isopentenoid synthesis in eukaryotic cells. An initiating role for post-translational control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Arch Biochem Biophys. 1993 Apr;302(1):265–271. doi: 10.1006/abbi.1993.1209. [DOI] [PubMed] [Google Scholar]
  14. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  15. Greenspan M. D., Yudkovitz J. B., Lo C. Y., Chen J. S., Alberts A. W., Hunt V. M., Chang M. N., Yang S. S., Thompson K. L., Chiang Y. C. Inhibition of hydroxymethylglutaryl-coenzyme A synthase by L-659,699. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7488–7492. doi: 10.1073/pnas.84.21.7488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harshman S., Sugg N., Cassidy P. Preparation and purification of staphylococcal alpha toxin. Methods Enzymol. 1988;165:3–7. doi: 10.1016/s0076-6879(88)65004-x. [DOI] [PubMed] [Google Scholar]
  17. Havel C. M., Watson J. A. Isopentenoid synthesis in isolated embryonic Drosophila cells: absolute, basal mevalonate synthesis rate determination. Arch Biochem Biophys. 1992 May 1;294(2):639–646. doi: 10.1016/0003-9861(92)90736-g. [DOI] [PubMed] [Google Scholar]
  18. Horie M., Tsuchiya Y., Hayashi M., Iida Y., Iwasawa Y., Nagata Y., Sawasaki Y., Fukuzumi H., Kitani K., Kamei T. NB-598: a potent competitive inhibitor of squalene epoxidase. J Biol Chem. 1990 Oct 25;265(30):18075–18078. [PubMed] [Google Scholar]
  19. Javitt N. B. Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids. FASEB J. 1990 Feb 1;4(2):161–168. doi: 10.1096/fasebj.4.2.2153592. [DOI] [PubMed] [Google Scholar]
  20. Johnston R. F., Pickett S. C., Barker D. L. Autoradiography using storage phosphor technology. Electrophoresis. 1990 May;11(5):355–360. doi: 10.1002/elps.1150110503. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Landau B. R., Brunengraber H. Shunt pathway of mevalonate metabolism. Methods Enzymol. 1985;110:100–114. doi: 10.1016/s0076-6879(85)10065-0. [DOI] [PubMed] [Google Scholar]
  23. Leonard D. A., Chen H. W. ATP-dependent degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in permeabilized cells. J Biol Chem. 1987 Jun 5;262(16):7914–7919. [PubMed] [Google Scholar]
  24. Mansurova S. E. Inorganic pyrophosphate in mitochondrial metabolism. Biochim Biophys Acta. 1989 Dec 7;977(3):237–247. doi: 10.1016/s0005-2728(89)80078-7. [DOI] [PubMed] [Google Scholar]
  25. Mayer R. J., Adams J. L., Bossard M. J., Berkhout T. A. Effects of a novel lanosterol 14 alpha-demethylase inhibitor on the regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hep G2 cells. J Biol Chem. 1991 Oct 25;266(30):20070–20078. [PubMed] [Google Scholar]
  26. Meigs T. E., Simoni R. D. Regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in permeabilized cells. J Biol Chem. 1992 Jul 5;267(19):13547–13552. [PubMed] [Google Scholar]
  27. Nakanishi M., Goldstein J. L., Brown M. S. Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. J Biol Chem. 1988 Jun 25;263(18):8929–8937. [PubMed] [Google Scholar]
  28. Panini S. R., Schnitzer-Polokoff R., Spencer T. A., Sinensky M. Sterol-independent regulation of 3-hydroxy-3-methylglutaryl-CoA reductase by mevalonate in Chinese hamster ovary cells. Magnitude and specificity. J Biol Chem. 1989 Jul 5;264(19):11044–11052. [PubMed] [Google Scholar]
  29. Parker R. A., Miller S. J., Gibson D. M. Phosphorylation of native 97-kDa 3-hydroxy-3-methylglutaryl-coenzyme A reductase from rat liver. Impact on activity and degradation of the enzyme. J Biol Chem. 1989 Mar 25;264(9):4877–4887. [PubMed] [Google Scholar]
  30. Plemenitas A., Havel C. M., Watson J. A. Sterol-mediated regulation of mevalonic acid synthesis. Accumulation of 4-carboxysterols as the predominant sterols synthesized in a Chinese hamster ovary cell cholesterol auxotroph (mutant 215). J Biol Chem. 1990 Oct 5;265(28):17012–17017. [PubMed] [Google Scholar]
  31. Roitelman J., Olender E. H., Bar-Nun S., Dunn W. A., Jr, Simoni R. D. Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum. J Cell Biol. 1992 Jun;117(5):959–973. doi: 10.1083/jcb.117.5.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roitelman J., Simoni R. D. Distinct sterol and nonsterol signals for the regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem. 1992 Dec 15;267(35):25264–25273. [PubMed] [Google Scholar]
  33. Schulz I. Permeabilizing cells: some methods and applications for the study of intracellular processes. Methods Enzymol. 1990;192:280–300. doi: 10.1016/0076-6879(90)92077-q. [DOI] [PubMed] [Google Scholar]
  34. Tanaka R. D., Edwards P. A., Lan S. F., Fogelman A. M. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in avian myeloblasts. Mode of action of 25-hydroxycholesterol. J Biol Chem. 1983 Nov 10;258(21):13331–13339. [PubMed] [Google Scholar]
  35. Watson J. A., Havel C. M., Lobos D. V., Baker F. C., Morrow C. J. Isoprenoid synthesis in isolated embryonic Drosophila cells. Sterol-independent regulatory signal molecule is distal to isopentenyl 1-pyrophosphates. J Biol Chem. 1985 Nov 15;260(26):14083–14091. [PubMed] [Google Scholar]
  36. Wynants J., Van Belle H. Single-run high-performance liquid chromatography of nucleotides, nucleosides, and major purine bases and its application to different tissue extracts. Anal Biochem. 1985 Jan;144(1):258–266. doi: 10.1016/0003-2697(85)90114-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES