Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Jul;80(1):160–164. doi: 10.1172/JCI113042

Colony-stimulating factors regulate the development of multinucleated osteoclasts from recently replicated cells in vitro.

J A Lorenzo, S L Sousa, J M Fonseca, J M Hock, E S Medlock
PMCID: PMC442214  PMID: 3496361

Abstract

Osteoclasts mediate the process of bone resorption. However, little is known about the mechanisms that regulate the formation of either osteoclasts or osteoclast precursors. In contrast, colony-stimulating factors (CSFs) are well-known to regulate the formation of myeloid cells and their precursors. Because osteoclasts and myeloid cells may originate from a common stem cell, we examined the effects of two CSFs, granulocyte-macrophage CSF (GM-CSF) and interleukin 3 (IL-3), on bone resorption, osteoclast formation, and the incorporation of recently replicated nuclei into the osteoclasts of mouse bone cultures. CSFs had little effect on the formation rate of osteoclasts or their resorptive activity but significantly decreased the percentage of recently replicated osteoclast progenitor cell nuclei present in the osteoclasts of bones treated with parathyroid hormone. GM-CSF also increased the number of myeloid cells in the marrow space of the cultures and the percentage of these cells derived from recently replicated progenitors. These results demonstrate that GM-CSF and IL-3 can regulate the development of osteoclasts from recently replicated precursor cells in cultured fetal mouse long bones. However, the mechanisms by which CSFs influence osteoclast formation are difficult to determine from these studies because markers for the osteoclast progenitor and precursor do not exist. These data also provide evidence that the differentiation of osteoclast progenitors is regulated by different factors at different points in their ontogeny.

Full text

PDF
160

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chambers J. J., Horton M. A. Osteoclasts: putative, surrogate and authentic. J Pathol. 1984 Dec;144(4):295–296. doi: 10.1002/path.1711440411. [DOI] [PubMed] [Google Scholar]
  2. Chambers T. J., Horton M. A. Failure of cells of the mononuclear phagocyte series to resorb bone. Calcif Tissue Int. 1984 Sep;36(5):556–558. doi: 10.1007/BF02405365. [DOI] [PubMed] [Google Scholar]
  3. Dexter T. M. Blood cell development. The message in the medium. 1984 Jun 28-Jul 4Nature. 309(5971):746–747. doi: 10.1038/309746a0. [DOI] [PubMed] [Google Scholar]
  4. Göthlin G., Ericsson J. L. The osteoclast: review of ultrastructure, origin, and structure-function relationship. Clin Orthop Relat Res. 1976 Oct;(120):201–231. [PubMed] [Google Scholar]
  5. Hall B. K. The origin and fate of osteoclasts. Anat Rec. 1975 Sep;183(1):1–11. doi: 10.1002/ar.1091830102. [DOI] [PubMed] [Google Scholar]
  6. Horton M. A., Rimmer E. F., Lewis D., Pringle J. A., Fuller K., Chambers T. J. Cell surface characterization of the human osteoclast: phenotypic relationship to other bone marrow-derived cell types. J Pathol. 1984 Dec;144(4):281–294. doi: 10.1002/path.1711440410. [DOI] [PubMed] [Google Scholar]
  7. Ihle J. N., Keller J., Henderson L., Klein F., Palaszynski E. Procedures for the purification of interleukin 3 to homogeneity. J Immunol. 1982 Dec;129(6):2431–2436. [PubMed] [Google Scholar]
  8. Jotereau F. V., Le Douarin N. M. The development relationship between osteocytes and osteoclasts: a study using the quail-chick nuclear marker in endochondral ossification. Dev Biol. 1978 Apr;63(2):253–265. doi: 10.1016/0012-1606(78)90132-x. [DOI] [PubMed] [Google Scholar]
  9. Kahn A. J., Simmons D. J. Investigation of cell lineage in bone using a chimaera of chick and quial embryonic tissue. Nature. 1975 Nov 27;258(5533):325–327. doi: 10.1038/258325a0. [DOI] [PubMed] [Google Scholar]
  10. Kahn A. J., Stewart C. C., Teitelbaum S. L. Contact-mediated bone resorption by human monocytes in vitro. Science. 1978 Mar 3;199(4332):988–990. doi: 10.1126/science.622581. [DOI] [PubMed] [Google Scholar]
  11. Krieger N. S., Feldman R. S., Tashjian A. H., Jr Parathyroid hormone and calcitonin interactions in bone: irradiation-induced inhibition of escape in vitro. Calcif Tissue Int. 1982 Mar;34(2):197–203. doi: 10.1007/BF02411233. [DOI] [PubMed] [Google Scholar]
  12. Lorenzo J. A., Raisz L. G., Hock J. M. DNA synthesis is not necessary for osteoclastic responses to parathyroid hormone in cultured fetal rat long bones. J Clin Invest. 1983 Dec;72(6):1924–1929. doi: 10.1172/JCI111156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Loutit J. F., Nisbet N. W. The origin of osteoclasts. Immunobiology. 1982 Apr;161(3-4):193–203. doi: 10.1016/S0171-2985(82)80074-0. [DOI] [PubMed] [Google Scholar]
  14. MacDonald B. R., Mundy G. R., Clark S., Wang E. A., Kuehl T. J., Stanley E. R., Roodman G. D. Effects of human recombinant CSF-GM and highly purified CSF-1 on the formation of multinucleated cells with osteoclast characteristics in long-term bone marrow cultures. J Bone Miner Res. 1986 Apr;1(2):227–233. doi: 10.1002/jbmr.5650010210. [DOI] [PubMed] [Google Scholar]
  15. Marks S. C., Jr, Seifert M. F. The lifespan of osteoclasts: experimental studies using the giant granule cytoplasmic marker characteristic of beige mice. Bone. 1985;6(6):451–455. doi: 10.1016/8756-3282(85)90223-6. [DOI] [PubMed] [Google Scholar]
  16. McSheehy P. M., Chambers T. J. Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology. 1986 Feb;118(2):824–828. doi: 10.1210/endo-118-2-824. [DOI] [PubMed] [Google Scholar]
  17. Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science. 1985 Jul 5;229(4708):16–22. doi: 10.1126/science.2990035. [DOI] [PubMed] [Google Scholar]
  18. Mundy C. R., Altman A. J., Gondek M. D., Bandelin J. G. Direct resorption of bone by human monocytes. Science. 1977 Jun 3;196(4294):1109–1111. doi: 10.1126/science.16343. [DOI] [PubMed] [Google Scholar]
  19. Pluznik D. H., Cunningham R. E., Noguchi P. D. Colony-stimulating factor (CSF) controls proliferation of CSF-dependent cells by acting during the G1 phase of the cell cycle. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7451–7455. doi: 10.1073/pnas.81.23.7451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Prestidge R. L., Watson J. D., Urdal D. L., Mochizuki D., Conlon P., Gillis S. Biochemical comparison of murine colony-stimulating factors secreted by a T cell lymphoma and a myelomonocytic leukemia. J Immunol. 1984 Jul;133(1):293–298. [PubMed] [Google Scholar]
  21. RAISZ L. G. BONE RESORPTION IN TISSUE CULTURE. FACTORS INFLUENCING THE RESPONSE TO PARATHYROID HORMONE. J Clin Invest. 1965 Jan;44:103–116. doi: 10.1172/JCI105117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scheven B. A., Burger E. H., Kawilarang-de Haas E. W., Wassenaar A. M., Nijweide P. J. Effects of ionizing irradiation on formation and resorbing activity of osteoclasts in vitro. Lab Invest. 1985 Jul;53(1):72–79. [PubMed] [Google Scholar]
  23. Scheven B. A., Visser J. W., Nijweide P. J. In vitro osteoclast generation from different bone marrow fractions, including a highly enriched haematopoietic stem cell population. Nature. 1986 May 1;321(6065):79–81. doi: 10.1038/321079a0. [DOI] [PubMed] [Google Scholar]
  24. Schwartz Z., Ornoy A., Soskolne W. A. An in vitro assay of bone development using fetal long bones of mice: morphological studies. Acta Anat (Basel) 1985;124(3-4):197–205. doi: 10.1159/000146118. [DOI] [PubMed] [Google Scholar]
  25. Teitelbaum S. L., Stewart C. C., Kahn A. J. Rodent peritoneal macrophages as bone resorbing cells. Calcif Tissue Int. 1979 Jul 3;27(3):255–261. doi: 10.1007/BF02441194. [DOI] [PubMed] [Google Scholar]
  26. Walker D. G. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science. 1975 Nov 21;190(4216):784–785. doi: 10.1126/science.1105786. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES