Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Jul;80(1):272–275. doi: 10.1172/JCI113059

Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule.

F Y Liu, M G Cogan
PMCID: PMC442229  PMID: 3597776

Abstract

The early proximal convoluted tubule (PCT) is the site of 50% of bicarbonate reabsorption in the nephron, but its control by angiotensin II has not been previously studied. In vivo microperfusion was used in both the early and late PCT in Munich-Wistar rats. Systemic angiotensin II administration (20 ng/kg X min) or inhibition of endogenous angiotensin II activity with saralasin (1 microgram/kg X min) caused profound changes in bicarbonate absorption in the early PCT (169 +/- 25 and -187 +/- 15 peq/mm X min, respectively). Because the bicarbonate absorptive capacity of the early PCT under free-flow conditions is 500 peq/mm X min, angiotensin II administration or inhibition affected greater than 60% of proton secretion in this segment. Both agents less markedly affected bicarbonate absorption in the late PCT (+/- 28 peq/mm X min) or chloride absorption (+/- 68-99 peq/mm X min) in both the early and late PCT. Because of its potential for controlling the majority of bicarbonate absorption in the early PCT (hence greater than or equal to 30% of bicarbonate absorption in the entire nephron), angiotensin II may be a powerful physiologic regulator of renal acidification.

Full text

PDF
272

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry C. A., Cogan M. G. Influence of peritubular protein on solute absorption in the rabbit proximal tubule. A specific effect on NaCl transport. J Clin Invest. 1981 Aug;68(2):506–516. doi: 10.1172/JCI110282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blantz R. C., Konnen K. S., Tucker B. J. Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat. J Clin Invest. 1976 Feb;57(2):419–434. doi: 10.1172/JCI108293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown G. P., Douglas J. G. Angiotensin II-binding sites in rat and primate isolated renal tubular basolateral membranes. Endocrinology. 1983 Jun;112(6):2007–2014. doi: 10.1210/endo-112-6-2007. [DOI] [PubMed] [Google Scholar]
  4. Harris P. J., Navar L. G., Ploth D. W. Evidence for angiotensin-stimulated proximal tubular fluid reabsorption in normotensive and hypertensive rats: effect of acute administration of captopril. Clin Sci (Lond) 1984 May;66(5):541–544. doi: 10.1042/cs0660541. [DOI] [PubMed] [Google Scholar]
  5. Harris P. J., Navar L. G. Tubular transport responses to angiotensin. Am J Physiol. 1985 May;248(5 Pt 2):F621–F630. doi: 10.1152/ajprenal.1985.248.5.F621. [DOI] [PubMed] [Google Scholar]
  6. Harris P. J., Young J. A. Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pflugers Arch. 1977 Jan 17;367(3):295–297. doi: 10.1007/BF00581370. [DOI] [PubMed] [Google Scholar]
  7. Liu F. Y., Cogan M. G. Axial heterogeneity of bicarbonate, chloride, and water transport in the rat proximal convoluted tubule. Effects of change in luminal flow rate and of alkalemia. J Clin Invest. 1986 Dec;78(6):1547–1557. doi: 10.1172/JCI112747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Maunsbach A. B. Observations on the segmentation of the proximal tubule in the rat kidney. Comparison of results from phase contrast, fluorescence and electron microscopy. J Ultrastruct Res. 1966 Oct;16(3):239–258. doi: 10.1016/s0022-5320(66)80060-6. [DOI] [PubMed] [Google Scholar]
  9. Mujais S. K., Kauffman S., Katz A. I. Angiotensin II binding sites in individual segments of the rat nephron. J Clin Invest. 1986 Jan;77(1):315–318. doi: 10.1172/JCI112293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pelayo J. C., Blantz R. C. Analysis of renal denervation in the hydropenic rat: interactions with angiotensin II. Am J Physiol. 1984 Jan;246(1 Pt 2):F87–F95. doi: 10.1152/ajprenal.1984.246.1.F87. [DOI] [PubMed] [Google Scholar]
  11. Schuster V. L., Kokko J. P., Jacobson H. R. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest. 1984 Feb;73(2):507–515. doi: 10.1172/JCI111237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Simpson R. U., Goodfriend T. L. Angiotensin and prostaglandin interactions in cultured kidney tubules. J Lab Clin Med. 1984 Feb;103(2):255–271. [PubMed] [Google Scholar]
  13. Smith J. B., Brock T. A. Analysis of angiotensin-stimulated sodium transport in cultured smooth muscle cells from rat aorta. J Cell Physiol. 1983 Mar;114(3):284–290. doi: 10.1002/jcp.1041140306. [DOI] [PubMed] [Google Scholar]
  14. Steiner R. W., Tucker B. J., Blantz R. C. Glomerular hemodynamics in rats with chronic sodium depletion. Effect of saralasin. J Clin Invest. 1979 Aug;64(2):503–512. doi: 10.1172/JCI109488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wirthensohn G., Guder W. G. Stimulation of phospholipid turnover by angiotensin II and phenylephrine in proximal convoluted tubules microdissected from mouse nephron. Pflugers Arch. 1985 May;404(1):94–96. doi: 10.1007/BF00581500. [DOI] [PubMed] [Google Scholar]
  16. Zimmerman B. G. Actions of angiotensin on adrenergic nerve endings. Fed Proc. 1978 Feb;37(2):199–202. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES