Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Aug;80(2):586–589. doi: 10.1172/JCI113109

Action of erythropoietin in vitro on rabbit reticulocyte membrane Ca2+-ATPase activity.

W D Lawrence, P J Davis, S D Blas
PMCID: PMC442274  PMID: 2956280

Abstract

The mechanism of action of erythropoietin is thought to require specific interaction with the target cell surface and involve alteration of cellular calcium metabolism. Using the rabbit reticulocyte membrane as a model of the immature red cell membrane, we investigated the effects of human recombinant erythropoietin on membrane Ca2+-ATPase (calcium pump) activity in vitro. Erythropoietin in a concentration range of 0.025 to 3.0 U/ml progressively decreased membrane Ca2+-ATPase activity by up to 64% (P less than 0.01). These concentrations have been shown by others to stimulate in vitro erythroid growth. The action of erythropoietin on reticulocyte Ca2+-ATPase required an incubation time of 1 h before enzyme assay for maximum effect and was neutralized by antierythropoietin antiserum. Other nonhemopoietic growth factors (epidermal growth factor, insulin) had no effect in this assay. Ca2+-ATPase activity of membranes prepared from rabbit mature red blood cells was not inhibited by erythropoietin. The novel effect of erythropoietin on reticulocyte membrane Ca2+-ATPase activity is a mechanism by which erythropoietin can influence cellular Ca2+ metabolism.

Full text

PDF
586

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang S. C., Sikkema D., Goldwasser E. Evidence for an erythropoietin receptor protein on rat bone marrow cells. Biochem Biophys Res Commun. 1974 Mar 25;57(2):399–405. doi: 10.1016/0006-291x(74)90944-9. [DOI] [PubMed] [Google Scholar]
  2. Charbonneau H., Hice R., Hart R. C., Cormier M. J. Purification of calmodulin by Ca2+-dependent affinity chromatography. Methods Enzymol. 1983;102:17–39. doi: 10.1016/s0076-6879(83)02005-4. [DOI] [PubMed] [Google Scholar]
  3. Choi H. S., Wojchowski D. M., Sytkowski A. J. Erythropoietin rapidly alters phosphorylation of pp43, an erythroid membrane protein. J Biol Chem. 1987 Mar 5;262(7):2933–2936. [PubMed] [Google Scholar]
  4. Cotes P. M. Immunoreactive erythropoietin in serum. I. Evidence for the validity of the assay method and the physiological relevance of estimates. Br J Haematol. 1982 Mar;50(3):427–438. doi: 10.1111/j.1365-2141.1982.tb01938.x. [DOI] [PubMed] [Google Scholar]
  5. Davis F. B., Davis P. J., Blas S. D. Role of calmodulin in thyroid hormone stimulation in vitro of human erythrocyte Ca2+-ATPase activity. J Clin Invest. 1983 Mar;71(3):579–586. doi: 10.1172/JCI110803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis P. J., Blas S. D. In vitro stimulation of human red blood cell Ca2+-ATPase by thyroid hormone. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1073–1080. doi: 10.1016/0006-291x(81)90728-2. [DOI] [PubMed] [Google Scholar]
  7. Garcia J. F., Ebbe S. N., Hollander L., Cutting H. O., Miller M. E., Cronkite E. P. Radioimmunoassay of erythropoietin: circulating levels in normal and polycythemic human beings. J Lab Clin Med. 1982 May;99(5):624–635. [PubMed] [Google Scholar]
  8. Krantz S. B., Goldwasser E. Specific binding of erythropoietin to spleen cells infected with the anemia strain of Friend virus. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7574–7578. doi: 10.1073/pnas.81.23.7574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lawrence W. D., Davis P. J., Blas S. D., Schoenl M. Interaction of thyroid hormone and sex steroids at the rabbit reticulocyte membrane in vitro: control by 17 beta-estradiol and testosterone of thyroid hormone-responsive Ca2+-ATPase activity. Arch Biochem Biophys. 1984 Nov 15;235(1):78–85. doi: 10.1016/0003-9861(84)90256-x. [DOI] [PubMed] [Google Scholar]
  10. McLeod D. L., Shreeve M. M., Axelrad A. A. Improved plasma culture system for production of erythrocytic colonies in vitro: quantitative assay method for CFU-E. Blood. 1974 Oct;44(4):517–534. [PubMed] [Google Scholar]
  11. Pleasure D., Wyszynski B., Sumner A., Schotland D., Feldman B., Nugent N., Hitz K., Goodman D. B. Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. J Clin Invest. 1979 Nov;64(5):1157–1167. doi: 10.1172/JCI109569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Roodman G. D., Spivak J. L., Zanjani E. D. Stimulation of erythroid colony formation in vitro by erythropoietin immobilized on agarose-bound lectins. J Lab Clin Med. 1981 Nov;98(5):684–690. [PubMed] [Google Scholar]
  13. Sawyer S. T., Krantz S. B. Erythropoietin stimulates 45Ca2+ uptake in Friend virus-infected erythroid cells. J Biol Chem. 1984 Mar 10;259(5):2769–2774. [PubMed] [Google Scholar]
  14. Singer J. W., Samuels A. I., Adamson J. W. Steroids and hematopoiesis. I. The effect of steroids on in vitro erythroid colony growth: structure/activity relationships. J Cell Physiol. 1976 Jun;88(2):127–134. doi: 10.1002/jcp.1040880202. [DOI] [PubMed] [Google Scholar]
  15. Urabe A., Sassa S., Kappas A. The influence of steroid hormone metabolites on the in vitro development of erythroid colonies derived from human bone marrow. J Exp Med. 1979 Jun 1;149(6):1314–1325. doi: 10.1084/jem.149.6.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES