Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Sep;80(3):613–620. doi: 10.1172/JCI113113

Comparison of effects of dobutamine and ouabain on left ventricular contraction and relaxation in closed-chest dogs.

W C Little, A Rassi Jr, G L Freeman
PMCID: PMC442282  PMID: 3624480

Abstract

Because catecholamines and digitalis have different effects on the time course of myocardial intracellular calcium concentration, their effects on the time course of left ventricular contraction and relaxation may also be different. To study this question, dogs were instrumented to measure left ventricular pressure and determine left ventricular volume from three ultrasonic dimensions. After full recovery from the instrumentation, the effects of dobutamine (2-10 micrograms/kg), ouabain (0.5 mg i.v.) alone, and ouabain given after propranolol (2 mg/kg i.v.), or phentolamine (5 mg i.v.) and incremental doses of ouabain (0.25-0.75 mg i.v.) were assessed on different days. Left ventricular pressure and volume were varied by caval occlusions. Dobutamine significantly increased the slope of the left ventricular end-systolic pressure-volume relation (Emax) and the slope of the dP/dtmax-end-diastolic volume relation (dE/dtmax), while significantly decreasing the time from end-diastole to end-systole (tmax) and the time constant (T) of the isovolumic fall in left ventricular pressure. Ouabain also increased Emax and dE/dtmax but did not alter tmax or T. Dobutamine produced a greater increase in dE/dtmax than in Emax, whereas ouabain produced similar increases in both. These effects of ouabain were not altered by pretreatment with propranolol or phentolamine. We conclude that although dobutamine and ouabain are both positive inotropes that increase Emax, dobutamine speeds the rate of left ventricular contraction (tmax) and relaxation (T), whereas ouabain does not. These effects of ouabain and dobutamine on global parameters of left ventricular chamber performance mirror their influence on intracellular calcium availability. Furthermore, these observations are consistent with the predictions of the time-varying elastance model of the left ventricle and support its usefulness as a conceptual framework to understand and link events occurring during isovolumic contraction, end-systole, and isovolumic relaxation.

Full text

PDF
613

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brutsaert D. L., Housmans P. R., Goethals M. A. Dual control of relaxation. Its role in the ventricular function in the mammalian heart. Circ Res. 1980 Nov;47(5):637–652. doi: 10.1161/01.res.47.5.637. [DOI] [PubMed] [Google Scholar]
  2. Brutsaert D. L., Rademakers F. E., Sys S. U. Triple control of relaxation: implications in cardiac disease. Circulation. 1984 Jan;69(1):190–196. doi: 10.1161/01.cir.69.1.190. [DOI] [PubMed] [Google Scholar]
  3. Cohn P. F., Liedtke A. J., Serur J., Sonnenblick E. H., Urschel C. W. Maximal rate of pressure fall (peak negative dP-dt) during ventricular relaxation. Cardiovasc Res. 1972 May;6(3):263–267. doi: 10.1093/cvr/6.3.263. [DOI] [PubMed] [Google Scholar]
  4. Freeman G. L., LeWinter M. M., Engler R. L., Covell J. W. Relationship between myocardial fiber direction and segment shortening in the midwall of the canine left ventricle. Circ Res. 1985 Jan;56(1):31–39. doi: 10.1161/01.res.56.1.31. [DOI] [PubMed] [Google Scholar]
  5. Gaasch W. H., Carroll J. D., Blaustein A. S., Bing O. H. Myocardial relaxation: effects of preload on the time course of isovolumetric relaxation. Circulation. 1986 May;73(5):1037–1041. doi: 10.1161/01.cir.73.5.1037. [DOI] [PubMed] [Google Scholar]
  6. Grossman W., Braunwald E., Mann T., McLaurin L. P., Green L. H. Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation. 1977 Nov;56(5):845–852. doi: 10.1161/01.cir.56.5.845. [DOI] [PubMed] [Google Scholar]
  7. Karliner J. S., LeWinter M. M., Mahler F., Engler R., O'Rourke R. A. Pharmacologic and hemodynamic influences on the rate of isovolumic left ventricular relaxation in the normal conscious dog. J Clin Invest. 1977 Sep;60(3):511–521. doi: 10.1172/JCI108803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Little W. C., Badke F. R., O'Rourke R. A. Effect of right ventricular pressure on the end-diastolic left ventricular pressure-volume relationship before and after chronic right ventricular pressure overload in dogs without pericardia. Circ Res. 1984 Jun;54(6):719–730. doi: 10.1161/01.res.54.6.719. [DOI] [PubMed] [Google Scholar]
  9. Little W. C., O'Rourke R. A. Effect of regional ischemia on the left ventricular end-systolic pressure-volume relation in chronically instrumented dogs. J Am Coll Cardiol. 1985 Feb;5(2 Pt 1):297–302. doi: 10.1016/s0735-1097(85)80050-4. [DOI] [PubMed] [Google Scholar]
  10. Little W. C. The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ Res. 1985 Jun;56(6):808–815. doi: 10.1161/01.res.56.6.808. [DOI] [PubMed] [Google Scholar]
  11. Maughan W. L., Sunagawa K., Burkhoff D., Sagawa K. Effect of arterial impedance changes on the end-systolic pressure-volume relation. Circ Res. 1984 May;54(5):595–602. doi: 10.1161/01.res.54.5.595. [DOI] [PubMed] [Google Scholar]
  12. Morgan J. P., Chesebro J. H., Pluth J. R., Puga F. J., Schaff H. V. Intracellular calcium transients in human working myocardium as detected with aequorin. J Am Coll Cardiol. 1984 Feb;3(2 Pt 1):410–418. doi: 10.1016/s0735-1097(84)80028-5. [DOI] [PubMed] [Google Scholar]
  13. Morgan J. P., Morgan K. G. Calcium and cardiovascular function. Intracellular calcium levels during contraction and relaxation of mammalian cardiac and vascular smooth muscle as detected with aequorin. Am J Med. 1984 Nov 5;77(5A):33–46. doi: 10.1016/s0002-9343(84)80006-6. [DOI] [PubMed] [Google Scholar]
  14. Olsen C. O., Tyson G. S., Maier G. W., Spratt J. A., Davis J. W., Rankin J. S. Dynamic ventricular interaction in the conscious dog. Circ Res. 1983 Jan;52(1):85–104. doi: 10.1161/01.res.52.1.85. [DOI] [PubMed] [Google Scholar]
  15. Park R. C., Little W. C., O'Rourke R. A. Effect of alteration of left ventricular activation sequence on the left ventricular end-systolic pressure-volume relation in closed-chest dogs. Circ Res. 1985 Nov;57(5):706–717. doi: 10.1161/01.res.57.5.706. [DOI] [PubMed] [Google Scholar]
  16. Parmley W. W., Sonnenblick E. H. Relation between mechanics of contraction and relaxation in mammalian cardiac muscle. Am J Physiol. 1969 May;216(5):1084–1091. doi: 10.1152/ajplegacy.1969.216.5.1084. [DOI] [PubMed] [Google Scholar]
  17. Raff G. L., Glantz S. A. Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart. Circ Res. 1981 Jun;48(6 Pt 1):813–824. doi: 10.1161/01.res.48.6.813. [DOI] [PubMed] [Google Scholar]
  18. Sagawa K. The end-systolic pressure-volume relation of the ventricle: definition, modifications and clinical use. Circulation. 1981 Jun;63(6):1223–1227. doi: 10.1161/01.cir.63.6.1223. [DOI] [PubMed] [Google Scholar]
  19. Sagawa K. The ventricular pressure-volume diagram revisited. Circ Res. 1978 Nov;43(5):677–687. doi: 10.1161/01.res.43.5.677. [DOI] [PubMed] [Google Scholar]
  20. Shroff S. G., Janicki J. S., Weber K. T. Evidence and quantitation of left ventricular systolic resistance. Am J Physiol. 1985 Aug;249(2 Pt 2):H358–H370. doi: 10.1152/ajpheart.1985.249.2.H358. [DOI] [PubMed] [Google Scholar]
  21. Slinker B. K., Glantz S. A. The accuracy of inferring left ventricular volume from dimension depends on the frequency of information needed to answer a given question. Circ Res. 1985 Feb;56(2):161–174. doi: 10.1161/01.res.56.2.161. [DOI] [PubMed] [Google Scholar]
  22. Sodums M. T., Badke F. R., Starling M. R., Little W. C., O'Rourke R. A. Evaluation of left ventricular contractile performance utilizing end-systolic pressure-volume relationships in conscious dogs. Circ Res. 1984 Jun;54(6):731–739. doi: 10.1161/01.res.54.6.731. [DOI] [PubMed] [Google Scholar]
  23. Suga H., Kitabatake A., Sagawa K. End-systolic pressure determines stroke volume from fixed end-diastolic volume in the isolated canine left ventricle under a constant contractile state. Circ Res. 1979 Feb;44(2):238–249. doi: 10.1161/01.res.44.2.238. [DOI] [PubMed] [Google Scholar]
  24. Suga H., Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974 Jul;35(1):117–126. doi: 10.1161/01.res.35.1.117. [DOI] [PubMed] [Google Scholar]
  25. Suga H., Sagawa K., Shoukas A. A. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973 Mar;32(3):314–322. doi: 10.1161/01.res.32.3.314. [DOI] [PubMed] [Google Scholar]
  26. Suga H., Yamakoshi K. Effects of stroke volume and velocity of ejection on end-systolic pressure of canine left ventricle. End-systolic volume clamping. Circ Res. 1977 May;40(5):445–450. doi: 10.1161/01.res.40.5.445. [DOI] [PubMed] [Google Scholar]
  27. Sunagawa K., Sagawa K. Models of ventricular contraction based on time-varying elastance. Crit Rev Biomed Eng. 1982 Mar;7(3):193–228. [PubMed] [Google Scholar]
  28. Thompson D. S., Waldron C. B., Coltart D. J., Jenkins B. S., Webb-Peploe M. M. Estimation of time constant of left ventricular relaxation. Br Heart J. 1983 Mar;49(3):250–258. doi: 10.1136/hrt.49.3.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weber K. T., Janicki J. S., Hunter W. C., Shroff S., Pearlman E. S., Fishman A. P. The contractile behavior of the heart and its functional coupling to the circulation. Prog Cardiovasc Dis. 1982 Mar-Apr;24(5):375–400. doi: 10.1016/0033-0620(82)90020-2. [DOI] [PubMed] [Google Scholar]
  30. Weiss J. L., Frederiksen J. W., Weisfeldt M. L. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest. 1976 Sep;58(3):751–760. doi: 10.1172/JCI108522. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES