Abstract
In vitro autoradiography with [3H]captopril was used to localize and quantitate angiotensin-converting enzyme (ACE) in various tissues in two-kidney, one-clip (2K-1C) hypertension, one-kidney, one-clip (1K-1C) hypertension, desoxycorticosterone acetate (DOCA)-salt hypertension, and a normotensive control group. There were no significant differences in mean systolic blood pressure among the hypertensive groups. Plasma renin activity (PRA) was highest in the 2K-1C group (6.20 +/- 2.17 ng/ml per h), intermediate in the 1K-1C group (2.19 +/- 0.62 ng/ml per h) and control group (3.20 +/- 0.53 ng/ml per h), and lowest in the DOCA-salt group (0.07 +/- 0.06 ng/ml per h). In the lungs, aorta, mesenteric arteries, and adrenal medulla, ACE labeling was highest in the 2K-1C group, intermediate in the 1K-1C and control groups, and lowest in the DOCA-salt group. ACE levels in these tissues correlated positively with PRA. In the kidney, anterior pituitary, testis, and choroid plexus of the brain, ACE levels correlated negatively with PRA, with lowest ACE levels in the 2K-1C group and highest levels in the DOCA-salt group. In the epididymis, posterior pituitary, and other regions of the brain, ACE levels did not differ significantly among the groups.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asaad M. M., Antonaccio M. J. Vascular wall renin in spontaneously hypertensive rats. Potential relevance to hypertension maintenance and antihypertensive effect of captopril. Hypertension. 1982 Jul-Aug;4(4):487–493. doi: 10.1161/01.hyp.4.4.487. [DOI] [PubMed] [Google Scholar]
- Caldwell P. R., Seegal B. C., Hsu K. C., Das M., Soffer R. L. Angiotensin-converting enzyme: vascular endothelial localization. Science. 1976 Mar 12;191(4231):1050–1051. doi: 10.1126/science.175444. [DOI] [PubMed] [Google Scholar]
- Campbell D. J. Circulating and tissue angiotensin systems. J Clin Invest. 1987 Jan;79(1):1–6. doi: 10.1172/JCI112768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen M. L., Wiley K. S., Kurz K. D. Effect of acute oral administration of captopril and MK-421 on vascular angiotensin converting enzyme activity in the spontaneously hypertensive rat. Life Sci. 1983 Feb 7;32(6):565–569. doi: 10.1016/0024-3205(83)90200-x. [DOI] [PubMed] [Google Scholar]
- Correa F. M., Plunkett L. M., Saavedra J. M. Quantitative distribution of angiotensin-converting enzyme (kininase II) in discrete areas of the rat brain by autoradiography with computerized microdensitometry. Brain Res. 1986 Jun 11;375(2):259–266. doi: 10.1016/0006-8993(86)90746-8. [DOI] [PubMed] [Google Scholar]
- DeForrest J. M., Davis J. O., Freeman R. H., Stephens G. A., Watkins B. E. Circadian changes in plasma renin activity and plasma aldosterone concentration in two-kidney hypertension rats. Hypertension. 1979 Mar-Apr;1(2):142–149. doi: 10.1161/01.hyp.1.2.142. [DOI] [PubMed] [Google Scholar]
- Dzau V. J. Significance of the vascular renin-angiotensin pathway. Hypertension. 1986 Jul;8(7):553–559. doi: 10.1161/01.hyp.8.7.553. [DOI] [PubMed] [Google Scholar]
- Erdös E. G., Skidgel R. A. The angiotensin I-converting enzyme. Lab Invest. 1987 Apr;56(4):345–348. [PubMed] [Google Scholar]
- Ganten D., Lang R. E., Lehmann E., Unger T. Brain angiotensin: on the way to becoming a well-studied neuropeptide system. Biochem Pharmacol. 1984 Nov 15;33(22):3523–3528. doi: 10.1016/0006-2952(84)90132-1. [DOI] [PubMed] [Google Scholar]
- Goldblatt P. J. What is the role of extrarenal renin? Arch Pathol Lab Med. 1986 Dec;110(12):1128–1130. [PubMed] [Google Scholar]
- Harris P. J., Navar L. G., Ploth D. W. Evidence for angiotensin-stimulated proximal tubular fluid reabsorption in normotensive and hypertensive rats: effect of acute administration of captopril. Clin Sci (Lond) 1984 May;66(5):541–544. doi: 10.1042/cs0660541. [DOI] [PubMed] [Google Scholar]
- Husain A., Jones C. W. A simple microassay for the estimation of renin concentration in plasma. J Pharmacol Methods. 1980 Sep;4(2):115–125. doi: 10.1016/0160-5402(80)90031-5. [DOI] [PubMed] [Google Scholar]
- Israel A., Correa F. M., Niwa M., Saavedra J. M. Quantitative determination of angiotensin II binding sites in rat brain and pituitary gland by autoradiography. Brain Res. 1984 Nov 26;322(2):341–345. doi: 10.1016/0006-8993(84)90130-6. [DOI] [PubMed] [Google Scholar]
- Israel A., Niwa M., Plunkett L. M., Saavedra J. M. High-affinity angiotensin receptors in rat adrenal medulla. Regul Pept. 1985 Jul;11(3):237–243. doi: 10.1016/0167-0115(85)90055-2. [DOI] [PubMed] [Google Scholar]
- Kraft K., Lang R. R., Gaida W., Unger T., Ganten D. Angiotensin stimulates beta-endorphin release from anterior pituitary gland cell cultures of rats. Neurosci Lett. 1984 Apr 20;46(1):25–29. doi: 10.1016/0304-3940(84)90193-9. [DOI] [PubMed] [Google Scholar]
- Mendelsohn F. A., Csicsmann J., Hutchinson J. S., DiNicolantonio R., Takata Y. Modulation of brain angiotensin-converting enzyme by dietary sodium and chronic intravenous and intracerebroventricular fusion of angiotensin II. Hypertension. 1982 Sep-Oct;4(5):590–596. doi: 10.1161/01.hyp.4.5.590. [DOI] [PubMed] [Google Scholar]
- Mizuno K., Gotoh M., Matsui J., Fukuchi S. Angiotensin-converting enzyme activity of the brain and the aorta in experimental hypertensive rats. Jpn Heart J. 1983 Jan;24(1):141–147. doi: 10.1536/ihj.24.141. [DOI] [PubMed] [Google Scholar]
- Mueller S. M., Cohen M. L. Evidence for a captopril-sensitive angiotensin converting enzyme in the hindquarter vasculature of SHR and WKY. Artery. 1985;12(6):337–345. [PubMed] [Google Scholar]
- Nambu K., Matsumoto K., Takeyama K., Hosoki K., Miyazaki H., Hashimoto M. Tissue levels, tissue angiotensin converting enzyme inhibition and antihypertensive effect of the novel antihypertensive agent alacepril in renal hypertensive rats. Arzneimittelforschung. 1986;36(1):47–51. [PubMed] [Google Scholar]
- Okamura T., Miyazaki M., Inagami T., Toda N. Vascular renin-angiotensin system in two-kidney, one clip hypertensive rats. Hypertension. 1986 Jul;8(7):560–565. doi: 10.1161/01.hyp.8.7.560. [DOI] [PubMed] [Google Scholar]
- Oliver J. A., Sciacca R. R. Local generation of angiotensin II as a mechanism of regulation of peripheral vascular tone in the rat. J Clin Invest. 1984 Oct;74(4):1247–1251. doi: 10.1172/JCI111534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oparil S. The sympathetic nervous system in clinical and experimental hypertension. Kidney Int. 1986 Sep;30(3):437–452. doi: 10.1038/ki.1986.204. [DOI] [PubMed] [Google Scholar]
- Ormsbee H. S., 3rd, Ryan C. F. Production of hypertension with desoxycorticorticosterone acetate-impregnated silicone rubber implants. J Pharm Sci. 1973 Feb;62(2):255–257. doi: 10.1002/jps.2600620215. [DOI] [PubMed] [Google Scholar]
- Pettinger W. A., Tanaka K., Keeton K., Campbell W. B., Brooks S. N. Renin release, an artifact of anesthesia and its implications in rats. Proc Soc Exp Biol Med. 1975 Mar;148(3):625–630. doi: 10.3181/00379727-148-38597. [DOI] [PubMed] [Google Scholar]
- Phillips M. I. New evidence for brain angiotensin and for its role in hypertension. Fed Proc. 1983 Jul;42(10):2667–2672. [PubMed] [Google Scholar]
- Plunkett L. M., Correa F. M., Saavedra J. M. Quantitative autoradiographic determination of angiotensin-converting enzyme binding in rat pituitary and adrenal glands with 125I-351A, a specific inhibitor. Regul Pept. 1985 Nov 28;12(4):263–272. doi: 10.1016/0167-0115(85)90169-7. [DOI] [PubMed] [Google Scholar]
- Rix E., Ganten D., Schüll B., Unger T., Taugner R. Converting-enzyme in the choroid plexus, brain, and kidney: immunocytochemical and biochemical studies in rats. Neurosci Lett. 1981 Mar 10;22(2):125–130. doi: 10.1016/0304-3940(81)90075-6. [DOI] [PubMed] [Google Scholar]
- Rosenthal J. H., Pfeifle B., Michailov M. L., Pschorr J., Jacob I. C., Dahlheim H. Investigations of components of the renin-angiotensin system in rat vascular tissue. Hypertension. 1984 May-Jun;6(3):383–390. doi: 10.1161/01.hyp.6.3.383. [DOI] [PubMed] [Google Scholar]
- Ryan J. W. Processing of endogenous polypeptides by the lungs. Annu Rev Physiol. 1982;44:241–255. doi: 10.1146/annurev.ph.44.030182.001325. [DOI] [PubMed] [Google Scholar]
- Ryan U. S., Ryan J. W., Whitaker C., Chiu A. Localization of angiotensin converting enzyme (kininase II). II. Immunocytochemistry and immunofluorescence. Tissue Cell. 1976;8(1):125–145. doi: 10.1016/0040-8166(76)90025-2. [DOI] [PubMed] [Google Scholar]
- Saye J. A., Singer H. A., Peach M. J. Role of endothelium in conversion of angiotensin I to angiotensin II in rabbit aorta. Hypertension. 1984 Mar-Apr;6(2 Pt 1):216–221. [PubMed] [Google Scholar]
- Share L., Crofton J. T. The role of vasopressin in hypertension. Fed Proc. 1984 Jan;43(1):103–106. [PubMed] [Google Scholar]
- Skidgel R. A., Erdös E. G. Novel activity of human angiotensin I converting enzyme: release of the NH2- and COOH-terminal tripeptides from the luteinizing hormone-releasing hormone. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1025–1029. doi: 10.1073/pnas.82.4.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snyder S. H. Brain enzymes as receptors: angiotensin-converting enzyme and enkephalin convertase. Ann N Y Acad Sci. 1986;463:21–30. doi: 10.1111/j.1749-6632.1986.tb21500.x. [DOI] [PubMed] [Google Scholar]
- Sobel D., Vagnucci A. Angiotensin II mediated ACTH release in rat pituitary cell culture. Life Sci. 1982 Apr 12;30(15):1281–1286. doi: 10.1016/0024-3205(82)90690-7. [DOI] [PubMed] [Google Scholar]
- Steele M. K., Brownfield M. S., Ganong W. F. Immunocytochemical localization of angiotensin immunoreactivity in gonadotropes and lactotropes of the rat anterior pituitary gland. Neuroendocrinology. 1982;35(3):155–158. doi: 10.1159/000123373. [DOI] [PubMed] [Google Scholar]
- Steele M. K., Negro-Vilar A., McCann S. M. Effect of angiotensin II on in vivo and in vitro release of anterior pituitary hormones in the female rat. Endocrinology. 1981 Sep;109(3):893–899. doi: 10.1210/endo-109-3-893. [DOI] [PubMed] [Google Scholar]
- Strittmatter S. M., De Souza E. B., Lynch D. R., Snyder S. H. Angiotensin-converting enzyme localized in the rat pituitary and adrenal glands by [3H]captopril autoradiography. Endocrinology. 1986 Apr;118(4):1690–1699. doi: 10.1210/endo-118-4-1690. [DOI] [PubMed] [Google Scholar]
- Strittmatter S. M., Kapiloff M. S., Snyder S. H. [3H]Captopril binding to membrane associated angiotensin converting enzyme. Biochem Biophys Res Commun. 1983 May 16;112(3):1027–1033. doi: 10.1016/0006-291x(83)91721-7. [DOI] [PubMed] [Google Scholar]
- Strittmatter S. M., Lo M. M., Javitch J. A., Snyder S. H. Autoradiographic visualization of angiotensin-converting enzyme in rat brain with [3H]captopril: localization to a striatonigral pathway. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1599–1603. doi: 10.1073/pnas.81.5.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strittmatter S. M., Snyder S. H. Angiotensin-converting enzyme in the male rat reproductive system: autoradiographic visualization with [3H]captopril. Endocrinology. 1984 Dec;115(6):2332–2341. doi: 10.1210/endo-115-6-2332. [DOI] [PubMed] [Google Scholar]
- Strittmatter S. M., Snyder S. H. Characterization of angiotensin converting enzyme by [3H]captopril binding. Mol Pharmacol. 1986 Feb;29(2):142–148. [PubMed] [Google Scholar]
- Strittmatter S. M., Thiele E. A., De Souza E. B., Snyder S. H. Angiotensin-converting enzyme in the testis and epididymis: differential development and pituitary regulation of isozymes. Endocrinology. 1985 Oct;117(4):1374–1379. doi: 10.1210/endo-117-4-1374. [DOI] [PubMed] [Google Scholar]
- Thurston H., Swales J. D., Bing R. F., Hurst B. C., Marks E. S. Vascular renin-like activity and blood pressure maintenance in the rat. Studies of the effect of changes in sodium balance, hypertension and nephrectomy. Hypertension. 1979 Nov-Dec;1(6):643–649. doi: 10.1161/01.hyp.1.6.643. [DOI] [PubMed] [Google Scholar]
- Thurston H., Swales J. D. Blood pressure response of nephrectomized hypertensive rats to converting enzyme inhibition: evidence for persistent vascular renin activity. Clin Sci Mol Med. 1977 Mar;52(3):299–304. doi: 10.1042/cs0520299. [DOI] [PubMed] [Google Scholar]
- Unger T., Ganten D., Lang R. E., Schölkens B. A. Persistent tissue converting enzyme inhibition following chronic treatment with Hoe498 and MK421 in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1985 Jan-Feb;7(1):36–41. doi: 10.1097/00005344-198501000-00007. [DOI] [PubMed] [Google Scholar]
- Unnerstall J. R., Niehoff D. L., Kuhar M. J., Palacios J. M. Quantitative receptor autoradiography using [3H]ultrofilm: application to multiple benzodiazepine receptors. J Neurosci Methods. 1982 Jul;6(1-2):59–73. doi: 10.1016/0165-0270(82)90016-4. [DOI] [PubMed] [Google Scholar]
- Velletri P. A., Aquilano D. R., Bruckwick E., Tsai-Morris C. H., Dufau M. L., Lovenberg W. Endocrinological control and cellular localization of rat testicular angiotensin-converting enzyme (EC 3.4.15.1). Endocrinology. 1985 Jun;116(6):2516–2522. doi: 10.1210/endo-116-6-2516. [DOI] [PubMed] [Google Scholar]
- Velletri P. A. Testicular angiotensin I-converting enzyme (E.C. 3.4.15.1). Life Sci. 1985 Apr 29;36(17):1597–1608. doi: 10.1016/0024-3205(85)90362-5. [DOI] [PubMed] [Google Scholar]
- Velletri P., Bean B. L. The effects of captopril on rat aortic angiotensin-converting enzyme. J Cardiovasc Pharmacol. 1982 Mar-Apr;4(2):315–325. doi: 10.1097/00005344-198203000-00022. [DOI] [PubMed] [Google Scholar]
- Ward P. E., Sheridan M. A. Immunoelectrophoretic analysis of renal and intestinal brush border converting enzyme. Biochem Pharmacol. 1983 Jan 15;32(2):265–274. doi: 10.1016/0006-2952(83)90554-3. [DOI] [PubMed] [Google Scholar]