Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Sep;80(3):852–860. doi: 10.1172/JCI113143

Cyclical oxidation-reduction of the C3 position on bile acids catalyzed by rat hepatic 3 alpha-hydroxysteroid dehydrogenase. I. Studies with the purified enzyme, isolated rat hepatocytes, and inhibition by indomethacin.

H Takikawa, A Stolz, N Kaplowitz
PMCID: PMC442312  PMID: 3476498

Abstract

We recently identified that the Y' bile acid binders are 3 alpha-hydroxysteroid dehydrogenases (3 alpha-HSD). In the present studies, purified 3 alpha-HSD catalyzed rapid 3H loss from [3 beta-3H, C24-14C]lithocholic and chenodeoxycholic acids without net conversion to 3-oxo bile acids under physiologic pH and redox conditions. [3 beta-3H]Cholic acid was a poor substrate. The Y' fraction of hepatic cytosol was exclusively responsible for this activity and 3H was transferred selectively to NADP+. Time-dependent 3H loss was also seen in isolated hepatocytes. Further hydroxylation products of lithocholic and chenodeoxycholic acids lost 3H at the same rate, whereas 3H loss from lithocholic acid rapidly ceased, which suggests compartmentation of this bile acid in hepatocytes. Indomethacin inhibited 3H loss from bile acids either in incubations with the pure enzyme or in isolated hepatocytes. Indomethacin did not alter the initial uptake rate of bile acids by hepatocytes, but caused a redistribution of unconjugated bile acids into the medium at early time points (2.5 and 5.0 min) and that of conjugated bile acids at later time intervals (30 min). 3H loss from the 3 beta position therefore can be used to probe the interaction between bile acids and cytosolic 3 alpha-HSD in intact cells, and indomethacin is capable of inhibiting this interaction.

Full text

PDF
852

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aw T. Y., Ookhtens M., Ren C., Kaplowitz N. Kinetics of glutathione efflux from isolated rat hepatocytes. Am J Physiol. 1986 Feb;250(2 Pt 1):G236–G243. doi: 10.1152/ajpgi.1986.250.2.G236. [DOI] [PubMed] [Google Scholar]
  2. Berséus O., Björkhem L. Enzymatic conversion of a delta-4-3-ketosteroid into a 3-alpha-hydroxy-5-beta steroid: mechanism and stereochemistry of hydrogen transfer from NADPH. Bile acids and steroids 190. Eur J Biochem. 1967 Nov;2(4):503–507. doi: 10.1111/j.1432-1033.1967.tb00164.x. [DOI] [PubMed] [Google Scholar]
  3. Björkhem I., Liljeqvist L., Nilsell K., Einarsson K. Oxidoreduction of different hydroxyl groups in bile acids during their enterohepatic circulation in man. J Lipid Res. 1986 Feb;27(2):177–182. [PubMed] [Google Scholar]
  4. Inoue M., Kinne R., Tran T., Arias I. M. Taurocholate transport by rat liver sinusoidal membrane vesicles: evidence of sodium cotransport. Hepatology. 1982 Sep-Oct;2(5):572–579. doi: 10.1002/hep.1840020510. [DOI] [PubMed] [Google Scholar]
  5. Jones D. P. Determination of pyridine dinucleotides in cell extracts by high-performance liquid chromatography. J Chromatogr. 1981 Oct 9;225(2):446–449. doi: 10.1016/s0378-4347(00)80293-5. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Lim W. C., Jordan T. W. Subcellular distribution of hepatic bile acid-conjugating enzymes. Biochem J. 1981 Sep 1;197(3):611–618. doi: 10.1042/bj1970611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Meier P. J., St Meier-Abt A., Barrett C., Boyer J. L. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier. J Biol Chem. 1984 Aug 25;259(16):10614–10622. [PubMed] [Google Scholar]
  9. Moldéus P., Högberg J., Orrenius S. Isolation and use of liver cells. Methods Enzymol. 1978;52:60–71. doi: 10.1016/s0076-6879(78)52006-5. [DOI] [PubMed] [Google Scholar]
  10. Ogura M., Goto M., Ayaki Y. Formation of bile acids in hemoglobin-free perfused rat livers. J Biochem. 1978 Feb;83(2):527–535. doi: 10.1093/oxfordjournals.jbchem.a131940. [DOI] [PubMed] [Google Scholar]
  11. Penning T. M., Mukharji I., Barrows S., Talalay P. Purification and properties of a 3 alpha-hydroxysteroid dehydrogenase of rat liver cytosol and its inhibition by anti-inflammatory drugs. Biochem J. 1984 Sep 15;222(3):601–611. doi: 10.1042/bj2220601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Penning T. M., Talalay P. Inhibition of a major NAD(P)-linked oxidoreductase from rat liver cytosol by steroidal and nonsteroidal anti-inflammatory agents and by prostaglandins. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4504–4508. doi: 10.1073/pnas.80.14.4504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stolz A., Takikawa H., Sugiyama Y., Kuhlenkamp J., Kaplowitz N. 3 alpha-hydroxysteroid dehydrogenase activity of the Y' bile acid binders in rat liver cytosol. Identification, kinetics, and physiologic significance. J Clin Invest. 1987 Feb;79(2):427–434. doi: 10.1172/JCI112829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Strange R. C. Hepatic bile flow. Physiol Rev. 1984 Oct;64(4):1055–1102. doi: 10.1152/physrev.1984.64.4.1055. [DOI] [PubMed] [Google Scholar]
  15. Sugiyama Y., Stolz A., Sugimoto M., Kaplowitz N. Evidence for a common high affinity binding site on glutathione S-transferase B for lithocholic acid and bilirubin. J Lipid Res. 1984 Nov;25(11):1177–1183. [PubMed] [Google Scholar]
  16. Sugiyama Y., Stolz A., Sugimoto M., Kuhlenkamp J., Yamada T., Kaplowitz N. Identification and partial purification of a unique phenolic steroid sulphotransferase in rat liver cytosol. Biochem J. 1984 Dec 15;224(3):947–953. doi: 10.1042/bj2240947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sugiyama Y., Yamada T., Kaplowitz N. Newly identified bile acid binders in rat liver cytosol. Purification and comparison with glutathione S-transferases. J Biol Chem. 1983 Mar 25;258(6):3602–3607. [PubMed] [Google Scholar]
  18. THOMAS P. J., HSIA S. L., MATSCHINER J. T., DOISY E. A., Jr, ELLIOTT W. H., THAYER S. A., DOISY E. A. BILE ACIDS. XIX. METABOLISM OF LITHOCHOLIC ACID-24-14C IN THE RAT. J Biol Chem. 1964 Jan;239:102–105. [PubMed] [Google Scholar]
  19. Takikawa H., Kaplowitz N. Binding of bile acids, oleic acid, and organic anions by rat and human hepatic Z protein. Arch Biochem Biophys. 1986 Nov 15;251(1):385–392. doi: 10.1016/0003-9861(86)90086-x. [DOI] [PubMed] [Google Scholar]
  20. Takikawa H., Otsuka H., Beppu T., Seyama Y., Yamakawa T. Quantitative determination of bile acid glucuronides in serum by mass fragmentography. J Biochem. 1982 Oct;92(4):985–998. doi: 10.1093/oxfordjournals.jbchem.a134055. [DOI] [PubMed] [Google Scholar]
  21. Takikawa H., Sugiyama Y., Kaplowitz N. Binding of bile acids by glutathione S-transferases from rat liver. J Lipid Res. 1986 Sep;27(9):955–966. [PubMed] [Google Scholar]
  22. Usui T., Oshio R., Kawamoto M., Yamasaki K. Oxidation of 3-alpha-hydroxyl groups of the bile acids during enterohepatic circulation. Yonago Acta Med. 1966 Nov;10(3):252–259. [PubMed] [Google Scholar]
  23. Wu C., Mathews K. P. Indomethacin inhibition of glutathione S-transferases. Biochem Biophys Res Commun. 1983 May 16;112(3):980–985. doi: 10.1016/0006-291x(83)91714-x. [DOI] [PubMed] [Google Scholar]
  24. Yesair D. W., Callahan M., Remington L., Kensler C. J. Role of the entero-hepatic cycle of indomethacin on its metabolism, distribution in tissues and its excretion by rats, dogs and monkeys. Biochem Pharmacol. 1970 May;19(5):1579–1590. doi: 10.1016/0006-2952(70)90146-2. [DOI] [PubMed] [Google Scholar]
  25. Ziegler K. Further characterization of 3'-isothiocyanatobenzamido[3H]cholate binding to hepatocytes. Correlation with bile acid transport inhibition and protection by substrates and inhibitors. Biochim Biophys Acta. 1985 Sep 25;819(1):37–44. doi: 10.1016/0005-2736(85)90193-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES