Abstract
Testing of nuclear DNA polymorphisms in human populations has been extended to closely related primates. For many polymorphisms, one allele is shared by two or more species: such shared alleles are likely to be ancestral and provide insight not only into the relationships among the primates but also into the evolutionary history of modern humans. Humans from among eight worldwide populations share an allele with chimpanzees for 62 out of 79 polymorphisms examined. Frequencies of these ancestral alleles strengthen the conclusion that the earliest major separation of modern humans was between Africans and non-Africans. The average time since mutation of the ancestral alleles producing the current set of polymorphisms is estimated to be 700,000 years. While differences among ancestral allele frequencies in human populations suggest that natural selection may have played a role in the evolution of a subset of these polymorphisms, simulations indicate that a European bias in the ascertainment of polymorphisms may be at least partially responsible for observed differences. Simulations also suggest that observed heterozygosity levels in African populations, for classical polymorphisms and restriction fragment length polymorphisms, are artificially low due to the same bias. Observed patterns of mean heterozygosity and mean ancestral allele frequency provide support for the hypothesis that Europeans and northeast Asians are closely related. This work suggests that polymorphisms should be selected by testing a random sample of extant humans.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowcock A. M., Bucci C., Hebert J. M., Kidd J. R., Kidd K. K., Friedlaender J. S., Cavalli-Sforza L. L. Study of 47 DNA markers in five populations from four continents. Gene Geogr. 1987 Apr;1(1):47–64. [PubMed] [Google Scholar]
- Bowcock A. M., Hebert J. M., Mountain J. L., Kidd J. R., Rogers J., Kidd K. K., Cavalli-Sforza L. L. Study of an additional 58 DNA markers in five human populations from four continents. Gene Geogr. 1991 Dec;5(3):151–173. [PubMed] [Google Scholar]
- Bowcock A. M., Kidd J. R., Mountain J. L., Hebert J. M., Carotenuto L., Kidd K. K., Cavalli-Sforza L. L. Drift, admixture, and selection in human evolution: a study with DNA polymorphisms. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):839–843. doi: 10.1073/pnas.88.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R., Cavalli-Sforza L. L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994 Mar 31;368(6470):455–457. doi: 10.1038/368455a0. [DOI] [PubMed] [Google Scholar]
- Cavalli-Sforza L. L., Piazza A. Analysis of evolution: evolutionary rates, independence and treeness. Theor Popul Biol. 1975 Oct;8(2):127–165. doi: 10.1016/0040-5809(75)90029-5. [DOI] [PubMed] [Google Scholar]
- Cavalli-Sforza L. L., Piazza A., Menozzi P., Mountain J. Reconstruction of human evolution: bringing together genetic, archaeological, and linguistic data. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6002–6006. doi: 10.1073/pnas.85.16.6002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hedges S. B., Kumar S., Tamura K., Stoneking M. Human origins and analysis of mitochondrial DNA sequences. Science. 1992 Feb 7;255(5045):737–739. doi: 10.1126/science.1738849. [DOI] [PubMed] [Google Scholar]
- Maruyama T. The age of an allele in a finite population. Genet Res. 1974 Apr;23(2):137–143. doi: 10.1017/s0016672300014750. [DOI] [PubMed] [Google Scholar]
- Mountain J. L., Lin A. A., Bowcock A. M., Cavalli-Sforza L. L. Evolution of modern humans: evidence from nuclear DNA polymorphisms. Philos Trans R Soc Lond B Biol Sci. 1992 Aug 29;337(1280):159–165. doi: 10.1098/rstb.1992.0093. [DOI] [PubMed] [Google Scholar]
- Nei M., Livshits G. Genetic relationships of Europeans, Asians and Africans and the origin of modern Homo sapiens. Hum Hered. 1989;39(5):276–281. doi: 10.1159/000153872. [DOI] [PubMed] [Google Scholar]
- Nei M., Roychoudhury A. K. Evolutionary relationships of human populations on a global scale. Mol Biol Evol. 1993 Sep;10(5):927–943. doi: 10.1093/oxfordjournals.molbev.a040059. [DOI] [PubMed] [Google Scholar]
- Reynolds J., Weir B. S., Cockerham C. C. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics. 1983 Nov;105(3):767–779. doi: 10.1093/genetics/105.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Stoneking M., Jorde L. B., Bhatia K., Wilson A. C. Geographic variation in human mitochondrial DNA from Papua New Guinea. Genetics. 1990 Mar;124(3):717–733. doi: 10.1093/genetics/124.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stringer C. B., Andrews P. Genetic and fossil evidence for the origin of modern humans. Science. 1988 Mar 11;239(4845):1263–1268. doi: 10.1126/science.3125610. [DOI] [PubMed] [Google Scholar]
- Stringer C. B. The emergence of modern humans. Sci Am. 1990 Dec;263(6):98–104. doi: 10.1038/scientificamerican1290-98. [DOI] [PubMed] [Google Scholar]
- Templeton A. R. Human origins and analysis of mitochondrial DNA sequences. Science. 1992 Feb 7;255(5045):737–737. doi: 10.1126/science.1590849. [DOI] [PubMed] [Google Scholar]
- Vigilant L., Stoneking M., Harpending H., Hawkes K., Wilson A. C. African populations and the evolution of human mitochondrial DNA. Science. 1991 Sep 27;253(5027):1503–1507. doi: 10.1126/science.1840702. [DOI] [PubMed] [Google Scholar]
- Wainscoat J. S., Hill A. V., Boyce A. L., Flint J., Hernandez M., Thein S. L., Old J. M., Lynch J. R., Falusi A. G., Weatherall D. J. Evolutionary relationships of human populations from an analysis of nuclear DNA polymorphisms. Nature. 1986 Feb 6;319(6053):491–493. doi: 10.1038/319491a0. [DOI] [PubMed] [Google Scholar]
- Watterson G. A. Reversibility and the age of an allele. II. Two-allele models, with selection and mutation. Theor Popul Biol. 1977 Oct;12(2):179–196. doi: 10.1016/0040-5809(77)90041-7. [DOI] [PubMed] [Google Scholar]
- Watterson Reversibility and the age of an allele. I. Moran's infinitely many neutral alleles model. Theor Popul Biol. 1976 Dec;10(3):239–253. doi: 10.1016/0040-5809(76)90018-6. [DOI] [PubMed] [Google Scholar]