Abstract
Essential fatty acid (EFA) deficiency exerts a beneficial effect on immune-mediated glomerulonephritis, preventing both the tissue injury and consequent mortality. Because both macrophages and eicosanoids are thought to play pathogenic roles in glomerulonephritis, and because macrophages play an important role in modulating arachidonate metabolism at sites of renal injury, the effects of EFA deficiency on the population of resident glomerular macrophages and on glomerular eicosanoid generation were examined. EFA deficiency led to a striking reduction in the number of resident glomerular macrophages and a corresponding reduction in the number of resident glomerular Ia+ cells. This phenomenon was not strain-specific, was not due to a decrease in circulating monocytes, was not a function of changes in cell surface labeling characteristics, and was not restricted to a specific subset of glomeruli. In addition, EFA deficiency affected other areas of the renal cortex: a comparable depletion of interstitial macrophages and Ia+ cells was also observed. In conjunction with the decrease in glomerular macrophages seen with the deficiency state, a marked decrease in both basal and angiotensin II-stimulated glomerular eicosanoid production was noted. In contrast to angiotensin II, platelet-activating factor-induced eicosanoid production was not significantly affected by the deficiency state. These changes in glomerular eicosanoid production could not be attributed to changes in glomerular cyclooxygenase or reacylation capacity. Dietary (n-6) fatty acid supplementation, but not (n-3) fatty acid supplementation, reversed both the decrease in glomerular macrophages and the diminished eicosanoid metabolism seen with the deficiency state. Understanding the mechanisms behind the changes in the glomerular microenvironment induced by EFA deficiency may provide a basis for elucidating the protective effect of dietary fatty acid manipulation on immune-mediated glomerulonephritis.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrightson C. R., Baenziger N. L., Needleman P. Exaggerated human vascular cell prostaglandin biosynthesis mediated by monocytes: role of monokines and interleukin 1. J Immunol. 1985 Sep;135(3):1872–1877. [PubMed] [Google Scholar]
- Andrews B. S., Eisenberg R. A., Theofilopoulos A. N., Izui S., Wilson C. B., McConahey P. J., Murphy E. D., Roths J. B., Dixon F. J. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med. 1978 Nov 1;148(5):1198–1215. doi: 10.1084/jem.148.5.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ardaillou N., Hagege J., Nivez M. P., Ardaillou R., Schlondorff D. Vasoconstrictor-evoked prostaglandin synthesis in cultured human mesangial cells. Am J Physiol. 1985 Feb;248(2 Pt 2):F240–F246. doi: 10.1152/ajprenal.1985.248.2.F240. [DOI] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Boissonneault G. A., Johnston P. V. Essential fatty acid deficiency, prostaglandin synthesis and humoral immunity in Lewis rats. J Nutr. 1983 Jun;113(6):1187–1194. doi: 10.1093/jn/113.6.1187. [DOI] [PubMed] [Google Scholar]
- Elliott W. J., Morrison A. R., Sprecher H., Needleman P. Calcium-dependent oxidation of 5,8,11-icosatrienoic acid by the cyclooxygenase enzyme system. J Biol Chem. 1986 May 25;261(15):6719–6724. [PubMed] [Google Scholar]
- Evans J. F., Nathaniel D. J., Zamboni R. J., Ford-Hutchinson A. W. Leukotriene A3. A poor substrate but a potent inhibitor of rat and human neutrophil leukotriene A4 hydrolase. J Biol Chem. 1985 Sep 15;260(20):10966–10970. [PubMed] [Google Scholar]
- HOLMAN R. T. The ratio of trienoic: tetraenoic acids in tissue lipids as a measure of essential fatty acid requirement. J Nutr. 1960 Mar;70:405–410. doi: 10.1093/jn/70.3.405. [DOI] [PubMed] [Google Scholar]
- Holdsworth S. R., Neale T. J., Wilson C. B. Abrogation of macrophage-dependent injury in experimental glomerulonephritis in the rabbit. Use of an antimacrophage serum. J Clin Invest. 1981 Sep;68(3):686–698. doi: 10.1172/JCI110304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsueh W., Isakson P. C., Needleman P. Hormone selective lipase activation in the isolated rabbit heart. Prostaglandins. 1977 Jun;13(6):1073–1091. doi: 10.1016/0090-6980(77)90135-6. [DOI] [PubMed] [Google Scholar]
- Hurd E. R., Johnston J. M., Okita J. R., MacDonald P. C., Ziff M., Gilliam J. W. Prevention of glomerulonephritis and prolonged survival in New Zealand Black/New Zealand White F1 hybrid mice fed an essential fatty acid-deficient diet. J Clin Invest. 1981 Feb;67(2):476–485. doi: 10.1172/JCI110056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakschik B. A., Morrison A. R., Sprecher H. Products derived from 5,8,11-eicosatrienoic acid by the 5-lipoxygenase-leukotriene pathway. J Biol Chem. 1983 Nov 10;258(21):12797–12800. [PubMed] [Google Scholar]
- Kaizu K., Marsh D., Zipser R., Glassock R. J. Role of prostaglandins and angiotensin II in experimental glomerulonephritis. Kidney Int. 1985 Oct;28(4):629–635. doi: 10.1038/ki.1985.175. [DOI] [PubMed] [Google Scholar]
- Kelley V. E., Ferretti A., Izui S., Strom T. B. A fish oil diet rich in eicosapentaenoic acid reduces cyclooxygenase metabolites, and suppresses lupus in MRL-lpr mice. J Immunol. 1985 Mar;134(3):1914–1919. [PubMed] [Google Scholar]
- Kelley V. E., Sneve S., Musinski S. Increased renal thromboxane production in murine lupus nephritis. J Clin Invest. 1986 Jan;77(1):252–259. doi: 10.1172/JCI112284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefkowith J. B., Flippo V., Sprecher H., Needleman P. Paradoxical conservation of cardiac and renal arachidonate content in essential fatty acid deficiency. J Biol Chem. 1985 Dec 15;260(29):15736–15744. [PubMed] [Google Scholar]
- Lefkowith J. B., Jakschik B. A., Stahl P., Needleman P. Metabolic and functional alterations in macrophages induced by essential fatty acid deficiency. J Biol Chem. 1987 May 15;262(14):6668–6675. [PubMed] [Google Scholar]
- Lefkowith J. B., Okegawa T., DeSchryver-Kecskemeti K., Needleman P. Macrophage-dependent arachidonate metabolism in hydronephrosis. Kidney Int. 1984 Jul;26(1):10–17. doi: 10.1038/ki.1984.127. [DOI] [PubMed] [Google Scholar]
- Lianos E. A., Andres G. A., Dunn M. J. Glomerular prostaglandin and thromboxane synthesis in rat nephrotoxic serum nephritis. Effects on renal hemodynamics. J Clin Invest. 1983 Oct;72(4):1439–1448. doi: 10.1172/JCI111100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lianos E. A., Rahman M. A., Dunn M. J. Glomerular arachidonate lipoxygenation in rat nephrotoxic serum nephritis. J Clin Invest. 1985 Oct;76(4):1355–1359. doi: 10.1172/JCI112110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mertin J., Hunt R. Influence of polyunsaturated fatty acids on survival of skin allografts and tumor incidence in mice. Proc Natl Acad Sci U S A. 1976 Mar;73(3):928–931. doi: 10.1073/pnas.73.3.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy R. C., Pickett W. C., Culp B. R., Lands W. E. Tetraene and pentaene leukotrienes: selective production from murine mastocytoma cells after dietary manipulation. Prostaglandins. 1981 Oct;22(4):613–622. doi: 10.1016/0090-6980(81)90070-8. [DOI] [PubMed] [Google Scholar]
- Nathaniel D. J., Evans J. F., Leblanc Y., Léveillé C., Fitzsimmons B. J., Ford-Hutchinson A. W. Leukotriene A5 is a substrate and an inhibitor of rat and human neutrophil LTA4 hydrolase. Biochem Biophys Res Commun. 1985 Sep 16;131(2):827–835. doi: 10.1016/0006-291x(85)91314-2. [DOI] [PubMed] [Google Scholar]
- Needleman P., Raz A., Minkes M. S., Ferrendelli J. A., Sprecher H. Triene prostaglandins: prostacyclin and thromboxane biosynthesis and unique biological properties. Proc Natl Acad Sci U S A. 1979 Feb;76(2):944–948. doi: 10.1073/pnas.76.2.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ooi Y. M., Weiss M. A., Hsu A., Ooi B. S. Mechanisms of suppression of mouse mesangial cell proliferation by macrophage supernatants. J Immunol. 1983 Apr;130(4):1790–1795. [PubMed] [Google Scholar]
- Osborne M. J., Droz B., Meyer P., Morel F. Angiotensin II: renal localization in glomerular mesangial cells by autoradiography. Kidney Int. 1975 Oct;8(4):245–254. doi: 10.1038/ki.1975.108. [DOI] [PubMed] [Google Scholar]
- Pirotzky E., Bidault J., Burtin C., Gubler M. C., Benveniste J. Release of platelet-activating factor, slow-reacting substance, and vasoactive amines from isolated rat kidneys. Kidney Int. 1984 Feb;25(2):404–410. doi: 10.1038/ki.1984.31. [DOI] [PubMed] [Google Scholar]
- Prickett J. D., Robinson D. R., Steinberg A. D. Dietary enrichment with the polyunsaturated fatty acid eicosapentaenoic acid prevents proteinuria and prolongs survival in NZB x NZW F1 mice. J Clin Invest. 1981 Aug;68(2):556–559. doi: 10.1172/JCI110288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson D. R., Prickett J. D., Polisson R., Steinberg A. D., Levine L. The protective effect of dietary fish oil on murine lupus. Prostaglandins. 1985 Jul;30(1):51–75. doi: 10.1016/s0090-6980(85)80010-1. [DOI] [PubMed] [Google Scholar]
- Scharschmidt L. A., Dunn M. J. Prostaglandin synthesis by rat glomerular mesangial cells in culture. Effects of angiotensin II and arginine vasopressin. J Clin Invest. 1983 Jun;71(6):1756–1764. doi: 10.1172/JCI110931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlondorff D., Perez J., Satriano J. A. Differential stimulation of PGE2 synthesis in mesangial cells by angiotensin and A23187. Am J Physiol. 1985 Jan;248(1 Pt 1):C119–C126. doi: 10.1152/ajpcell.1985.248.1.C119. [DOI] [PubMed] [Google Scholar]
- Schlondorff D., Satriano J. A., Hagege J., Perez J., Baud L. Effect of platelet-activating factor and serum-treated zymosan on prostaglandin E2 synthesis, arachidonic acid release, and contraction of cultured rat mesangial cells. J Clin Invest. 1984 Apr;73(4):1227–1231. doi: 10.1172/JCI111309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiner G. F., Cotran R. S., Pardo V., Unanue E. R. A mononuclear cell component in experimental immunological glomerulonephritis. J Exp Med. 1978 Feb 1;147(2):369–384. doi: 10.1084/jem.147.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiner G. F., Cotran R. S., Unanue E. R. Modulation of Ia and leukocyte common antigen expression in rat glomeruli during the course of glomerulonephritis and aminonucleoside nephrosis. Lab Invest. 1984 Nov;51(5):524–533. [PubMed] [Google Scholar]
- Schreiner G. F., Kiely J. M., Cotran R. S., Unanue E. R. Characterization of resident glomerular cells in the rat expressing Ia determinants and manifesting genetically restricted interactions with lymphocytes. J Clin Invest. 1981 Oct;68(4):920–931. doi: 10.1172/JCI110347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiner G. F., Unanue E. R. Origin of the rat mesangial phagocyte and its expression of the leukocyte common antigen. Lab Invest. 1984 Nov;51(5):515–523. [PubMed] [Google Scholar]
- Stork J. E., Dunn M. J. Hemodynamic roles of thromboxane A2 and prostaglandin E2 in glomerulonephritis. J Pharmacol Exp Ther. 1985 Jun;233(3):672–678. [PubMed] [Google Scholar]
- Way C. F., Dougherty W. J., Cook J. A. Effects of essential fatty acid deficiency and indomethacin on histologic, ultrastructural, and phagocytic responses of hepatic macrophages to glucan. J Leukoc Biol. 1985 Feb;37(2):137–150. doi: 10.1002/jlb.37.2.137. [DOI] [PubMed] [Google Scholar]
- Whiteley P. J., Needleman P. Mechanism of enhanced fibroblast arachidonic acid metabolism by mononuclear cell factor. J Clin Invest. 1984 Dec;74(6):2249–2253. doi: 10.1172/JCI111651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamanaka W. K., Clemans G. W., Hutchinson M. L. Essential fatty acids deficiency in humans. Prog Lipid Res. 1980;19(3-4):187–215. doi: 10.1016/0163-7827(80)90004-1. [DOI] [PubMed] [Google Scholar]











