Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Oct;80(4):1068–1072. doi: 10.1172/JCI113162

Role of sodium in thyroid hormone uptake by rat skeletal muscle.

M Centanni 1, J Robbins 1
PMCID: PMC442348  PMID: 2821072

Abstract

Whether Na+ movement through the plasma membrane plays a role in thyroid hormone uptake was investigated in intact rat soleus muscles. After preincubation for 120 min at 37 degrees C in modified Krebs-Ringer bicarbonate containing 140 or 5 mM Na+ plus choline or lithium to maintain osmolarity, muscles were incubated with 50 pM [125I]triiodo-L-thyronine (T3) or [125I]L-thyroxine (T4) for 60 min. T3 uptake was decreased when extracellular Na+ was replaced by either choline or lithium, the amount of decrease corresponding to the specific (or saturable) uptake component. Monensin, an ionophore that stimulates Na+ entry, increased T3 uptake at 140 mM Na+ but not at 5 mM Na+. Amiloride, a Na+/H+ exchange inhibitor, had no effect on T3 uptake under basal conditions or when Na+ was replaced by choline, but reversed the action of lithium. Ouabain, an inhibitor of Na+/K+ ATPase, reduced specific T3 uptake. T4 uptake was unaffected by low extracellular Na+. These results are consistent with a major role of Na+ movement in T3 uptake by skeletal muscle, but not in T4 uptake, and suggest an involvement of membrane pumps in this process.

Full text

PDF
1068

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aickin C. C., Thomas R. C. An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres. J Physiol. 1977 Dec;273(1):295–316. doi: 10.1113/jphysiol.1977.sp012095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronson P. S. Kinetic properties of the plasma membrane Na+-H+ exchanger. Annu Rev Physiol. 1985;47:545–560. doi: 10.1146/annurev.ph.47.030185.002553. [DOI] [PubMed] [Google Scholar]
  3. Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
  4. Cheng S. Y. Characterization of binding and uptake of 3,3',5-triido-L-thyronine in cultured mouse fibroblasts. Endocrinology. 1983 May;112(5):1754–1762. doi: 10.1210/endo-112-5-1754. [DOI] [PubMed] [Google Scholar]
  5. Cuendet G. S., Loten E. G., Jeanrenaud B., Renold A. E. Decreased basal, noninsulin-stimulated glucose uptake and metabolism by skeletal soleus muscle isolated from obese-hyperglycemic (ob/ob) mice. J Clin Invest. 1976 Nov;58(5):1078–1088. doi: 10.1172/JCI108559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eckel J., Rao G. S., Rao M. L., Breuer H. Uptake of L-tri-iodothyronine by isolated rat liver cells. A process partially inhibited by metabolic inhibitors; attempts to distinguish between uptake and binding to intracellular proteins. Biochem J. 1979 Aug 15;182(2):473–491. doi: 10.1042/bj1820473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guidotti G. G., Borghetti A. F., Gazzola G. C. The regulation of amino acid transport in animal cells. Biochim Biophys Acta. 1978 Dec 15;515(4):329–366. doi: 10.1016/0304-4157(78)90009-6. [DOI] [PubMed] [Google Scholar]
  8. Halpern J., Hinkle P. M. Evidence for an active step in thyroid hormone transport to nuclei: drug inhibition of L-125I-triiodothyronine binding to nuclear receptors in rat pituitary tumor cells. Endocrinology. 1982 Mar;110(3):1070–1072. doi: 10.1210/endo-110-3-1070. [DOI] [PubMed] [Google Scholar]
  9. Holm A. C., Jacquemin C. Membrane transport of L-triiodthyronine by human red cell ghosts. Biochem Biophys Res Commun. 1979 Aug 13;89(3):1006–1017. doi: 10.1016/0006-291x(79)91877-1. [DOI] [PubMed] [Google Scholar]
  10. Holm A. C., Wong K. Y., Pliam N. B., Jorgensen E. C., Goldfine I. D. Uptake of L-triiodothyronine into human cultured lymphocytes. Acta Endocrinol (Copenh) 1980 Nov;95(3):350–358. doi: 10.1530/acta.0.0950350. [DOI] [PubMed] [Google Scholar]
  11. Kilberg M. S., Barber E. F., Handlogten M. E. Characteristics and hormonal regulation of amino acid transport system A in isolated rat hepatocytes. Curr Top Cell Regul. 1985;25:133–163. doi: 10.1016/b978-0-12-152825-6.50009-6. [DOI] [PubMed] [Google Scholar]
  12. Krenning E. P., Docter R., Bernard H. F., Visser T. J., Hennemann G. Active transport of triiodothyronine (T3) into isolated rat liver cells. FEBS Lett. 1978 Jul 1;91(1):113–116. doi: 10.1016/0014-5793(78)80029-5. [DOI] [PubMed] [Google Scholar]
  13. Krenning E., Docter R., Bernard B., Visser T., Hennemann G. Characteristics of active transport of thyroid hormone into rat hepatocytes. Biochim Biophys Acta. 1981 Sep 4;676(3):314–320. doi: 10.1016/0304-4165(81)90165-3. [DOI] [PubMed] [Google Scholar]
  14. Mahnensmith R. L., Aronson P. S. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes. Circ Res. 1985 Jun;56(6):773–788. doi: 10.1161/01.res.56.6.773. [DOI] [PubMed] [Google Scholar]
  15. Parl F., Korcek L., Siegel J. S., Tabachnick M. Uptake of triiodothyronine and thyroxine by isolated rabbit adipocytes. FEBS Lett. 1977 Nov 1;83(1):145–147. doi: 10.1016/0014-5793(77)80660-1. [DOI] [PubMed] [Google Scholar]
  16. Pontecorvi A., Robbins J. Energy-dependent uptake of 3,5,3'-triiodo-L-thyronine in rat skeletal muscle. Endocrinology. 1986 Dec;119(6):2755–2761. doi: 10.1210/endo-119-6-2755. [DOI] [PubMed] [Google Scholar]
  17. Rao G. S., Rao M. L., Thilmann A., Quednau H. D. Study of fluxes at low concentrations of L-tri-iodothyronine with rat liver cells and their plasma-membrane vesicles. Evidence for the accumulation of the hormone against a gradient. Biochem J. 1981 Sep 15;198(3):457–466. doi: 10.1042/bj1980457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rosić N. K., Standaert M. L., Pollet R. J. The mechanism of insulin stimulation of (Na+,K+)-ATPase transport activity in muscle. J Biol Chem. 1985 May 25;260(10):6206–6212. [PubMed] [Google Scholar]
  19. Sato K., Cahnmann H. J. Synthesis of [3,5-125I]triiodo-L-thyronine of high specific activity. Anal Biochem. 1980 Feb;102(1):237–242. doi: 10.1016/0003-2697(80)90345-0. [DOI] [PubMed] [Google Scholar]
  20. Vigne P., Frelin C., Lazdunski M. The Na+-dependent regulation of the internal pH in chick skeletal muscle cells. The role of the Na+/H+ exchange system and its dependence on internal pH. EMBO J. 1984 Aug;3(8):1865–1870. doi: 10.1002/j.1460-2075.1984.tb02060.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williams J. A., Withrow C. D., Woodbury D. M. Effects of ouabain and diphenylhydantoin on transmembrane potentials, intracellular electrolytes, and cell pH of rat muscle and liver in vivo. J Physiol. 1971 Jan;212(1):101–115. doi: 10.1113/jphysiol.1971.sp009312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. van Doorn J., van der Heide D., Roelfsema F. Sources and quantity of 3,5,3'-triiodothyronine in several tissues of the rat. J Clin Invest. 1983 Nov;72(5):1778–1792. doi: 10.1172/JCI111138. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES