Abstract
Human calcium transporting tissues were examined to determine whether they contained a protein similar to the Ca++-Mg++ adenosine triphosphatase (Ca++-Mg++ATPase) pump of the human erythrocyte membrane. Tissues were processed for immunoperoxidase staining using monoclonal antibodies against purified Ca++-Mg++ATPase. In human kidneys, specific staining was found only along the basolateral membrane of the distal convoluted tubules. Glomeruli and other segments of the nephron did not stain. Staining of erythrocytes in human spleen was readily observed. Human small intestine, human parathyroid, and human liver showed no antigens that crossreacted with the antibodies to Ca++-Mg++ATPase. Specific staining of distal tubule basolateral membranes from the kidney of a chimpanzee was also noted. Our experiments show, for the first time, that basolateral membranes of the human distal convoluted tubule contain a protein that is immunologically similar to the human erythrocyte Ca++-Mg++ATPase. These observations suggest that the cells of the distal convoluted tubules of human kidney may have a calcium pump similar to that of human erythrocyte membranes.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agus Z. S., Chiu P. J., Goldberg M. Regulation of urinary calcium excretion in the rat. Am J Physiol. 1977 Jun;232(6):F545–F549. doi: 10.1152/ajprenal.1977.232.6.F545. [DOI] [PubMed] [Google Scholar]
- Agus Z. S., Gardner L. B., Beck L. H., Goldberg M. Effects of parathyroid hormone on renal tubular reabsorption of calcium, sodium, and phosphate. Am J Physiol. 1973 May;224(5):1143–1148. doi: 10.1152/ajplegacy.1973.224.5.1143. [DOI] [PubMed] [Google Scholar]
- Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
- Boulpaep E. L., Seely J. F. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am J Physiol. 1971 Oct;221(4):1084–1096. doi: 10.1152/ajplegacy.1971.221.4.1084. [DOI] [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Caroni P., Carafoli E. The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J Biol Chem. 1981 Apr 10;256(7):3263–3270. [PubMed] [Google Scholar]
- Coe F. L., Firpo J. J., Jr Evidence for mild reversible hyperparathyroidism in distal renal tubular acidosis. Arch Intern Med. 1975 Nov;135(11):1485–1489. [PubMed] [Google Scholar]
- Costanzo L. S., Windhager E. E. Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol. 1978 Nov;235(5):F492–F506. doi: 10.1152/ajprenal.1978.235.5.F492. [DOI] [PubMed] [Google Scholar]
- Costanzo L. S., Windhager E. E. Effects of PTH, ADH, and cyclic AMP on distal tubular Ca and Na reabsorption. Am J Physiol. 1980 Nov;239(5):F478–F485. doi: 10.1152/ajprenal.1980.239.5.F478. [DOI] [PubMed] [Google Scholar]
- Doucet A., Katz A. I. High-affinity Ca-Mg-ATPase along the rabbit nephron. Am J Physiol. 1982 Apr;242(4):F346–F352. doi: 10.1152/ajprenal.1982.242.4.F346. [DOI] [PubMed] [Google Scholar]
- Douillard J. Y., Hoffman T. Enzyme-linked immunosorbent assay for screening monoclonal antibody production using enzyme-labeled second antibody. Methods Enzymol. 1983;92:168–174. doi: 10.1016/0076-6879(83)92016-5. [DOI] [PubMed] [Google Scholar]
- FERRIS T., KASHGARIAN M., LEVITIN H., BRANDT I., EPSTEIN F. H. Renal tubular acidosis and renal potassium wasting acquired as a result of hypercalcemic nephropathy. N Engl J Med. 1961 Nov 9;265:924–928. doi: 10.1056/NEJM196111092651902. [DOI] [PubMed] [Google Scholar]
- Gmaj P., Murer H., Carafoli E. Localization and properties of a high-affinity (Ca2+ + Mg2+)-ATPase in isolated kidney cortex plasma membranes. FEBS Lett. 1982 Aug 2;144(2):226–230. doi: 10.1016/0014-5793(82)80643-1. [DOI] [PubMed] [Google Scholar]
- Graf E., Verma A. K., Gorski J. P., Lopaschuk G., Niggli V., Zurini M., Carafoli E., Penniston J. T. Molecular properties of calcium-pumping ATPase from human erythrocytes. Biochemistry. 1982 Aug 31;21(18):4511–4516. doi: 10.1021/bi00261a049. [DOI] [PubMed] [Google Scholar]
- Gross M. D., Nelsestuen G. L., Kumar R. Observations on the binding of lanthanides and calcium to vitamin D-dependent chick intestinal calcium-binding protein. Implications regarding calcium-binding protein function. J Biol Chem. 1987 May 15;262(14):6539–6545. [PubMed] [Google Scholar]
- Hakim G., Itano T., Verma A. K., Penniston J. T. Purification of the Ca2+-and Mg2+-requiring ATPase from rat brain synaptic plasma membrane. Biochem J. 1982 Nov 1;207(2):225–231. doi: 10.1042/bj2070225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
- Imai M. Effects of parathyroid hormone and N6,O2'-dibutyryl cyclic AMP on Ca2+ transport across the rabbit distal nephron segments perfused in vitro. Pflugers Arch. 1981 May;390(2):145–151. doi: 10.1007/BF00590197. [DOI] [PubMed] [Google Scholar]
- Jarrett H. W., Penniston J. T. Partial purification of the Ca2+-Mg2+ ATPase activator from human erythrocytes: its similarity to the activator of 3':5' - cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1210–1216. doi: 10.1016/s0006-291x(77)80108-3. [DOI] [PubMed] [Google Scholar]
- Kennett R. H., Denis K. A., Tung A. S., Klinman N. R. Hybrid plasmacytoma production: fusions with adult spleen cells, monoclonal spleen fragments, neonatal spleen cells and human spleen cells. Curr Top Microbiol Immunol. 1978;81:77–91. doi: 10.1007/978-3-642-67448-8_13. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Law W. M., Jr, Heath H., 3rd Time- and dose-related biphasic effects of synthetic bovine parathyroid hormone fragment 1-34 on urinary cation excretion. J Clin Endocrinol Metab. 1984 Apr;58(4):606–608. doi: 10.1210/jcem-58-4-606. [DOI] [PubMed] [Google Scholar]
- Michalak M., Famulski K., Carafoli E. The Ca2+-pumping ATPase in skeletal muscle sarcolemma. Calmodulin dependence, regulation by cAMP-dependent phosphorylation, and purification. J Biol Chem. 1984 Dec 25;259(24):15540–15547. [PubMed] [Google Scholar]
- Niggli V., Penniston J. T., Carafoli E. Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem. 1979 Oct 25;254(20):9955–9958. [PubMed] [Google Scholar]
- Parys J. B., De Smedt H., Vandenberghe P., Borghgraef R. Characterization of ATP-driven calcium uptake in renal basal-lateral and renal endoplasmic reticulum membrane vesicles. Cell Calcium. 1985 Oct;6(5):413–429. doi: 10.1016/0143-4160(85)90018-1. [DOI] [PubMed] [Google Scholar]
- Roche C., Bellaton C., Pansu D., Miller A., 3rd, Bronner F. Localization of vitamin D-dependent active Ca2+ transport in rat duodenum and relation to CaBP. Am J Physiol. 1986 Sep;251(3 Pt 1):G314–G320. doi: 10.1152/ajpgi.1986.251.3.G314. [DOI] [PubMed] [Google Scholar]
- Roth J., Brown D., Norman A. W., Orci L. Localization of the vitamin D-dependent calcium-binding protein in mammalian kidney. Am J Physiol. 1982 Sep;243(3):F243–F252. doi: 10.1152/ajprenal.1982.243.3.F243. [DOI] [PubMed] [Google Scholar]
- Suki W. N. Calcium transport in the nephron. Am J Physiol. 1979 Jul;237(1):F1–F6. doi: 10.1152/ajprenal.1979.237.1.F1. [DOI] [PubMed] [Google Scholar]
- Sutton R. A., Wong N. L., Dirks J. H. Effects of metabolic acidosis and alkalosis on sodium and calcium transport in the dog kidney. Kidney Int. 1979 May;15(5):520–533. doi: 10.1038/ki.1979.67. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WRONG O., DAVIES H. E. The excretion of acid in renal disease. Q J Med. 1959 Apr;28(110):259–313. [PubMed] [Google Scholar]
- Wright F. S. Increasing magnitude of electrical potential along the renal distal tubule. Am J Physiol. 1971 Mar;220(3):624–638. doi: 10.1152/ajplegacy.1971.220.3.624. [DOI] [PubMed] [Google Scholar]
- Wuytack F., De Schutter G., Casteels R. Partial purification of (Ca2+ + Mg2+)-dependent ATPase from pig smooth muscle and reconstitution of an ATP-dependent Ca2+-transport system. Biochem J. 1981 Aug 15;198(2):265–271. doi: 10.1042/bj1980265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zubrzycka-Gaarn E., MacDonald G., Phillips L., Jorgensen A. O., MacLennan D. H. Monoclonal antibodies to the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum identify polymorphic forms of the enzyme and indicate the presence in the enzyme of a classical high-affinity Ca2+ binding site. J Bioenerg Biomembr. 1984 Dec;16(5-6):441–464. doi: 10.1007/BF00743238. [DOI] [PubMed] [Google Scholar]
- de StGroth S. F., Scheidegger D. Production of monoclonal antibodies: strategy and tactics. J Immunol Methods. 1980;35(1-2):1–21. doi: 10.1016/0022-1759(80)90146-5. [DOI] [PubMed] [Google Scholar]