Skip to main content
Springer logoLink to Springer
. 2015 May 1;75(5):186. doi: 10.1140/epjc/s10052-015-3376-y

Measurement of the inclusive 3-jet production differential cross section in proton–proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

V Khachatryan 1, A M Sirunyan 1, A Tumasyan 1, W Adam 2, T Bergauer 2, M Dragicevic 2, J Erö 2, C Fabjan 2, M Friedl 2, R Frühwirth 2, V M Ghete 2, C Hartl 2, N Hörmann 2, J Hrubec 2, M Jeitler 2, W Kiesenhofer 2, V Knünz 2, M Krammer 2, I Krätschmer 2, D Liko 2, I Mikulec 2, D Rabady 2, B Rahbaran 2, H Rohringer 2, R Schöfbeck 2, J Strauss 2, A Taurok 2, W Treberer-Treberspurg 2, W Waltenberger 2, C-E Wulz 2, V Mossolov 3, N Shumeiko 3, J Suarez Gonzalez 3, S Alderweireldt 4, M Bansal 4, S Bansal 4, T Cornelis 4, E A De Wolf 4, X Janssen 4, A Knutsson 4, S Luyckx 4, S Ochesanu 4, R Rougny 4, M Van De Klundert 4, H Van Haevermaet 4, P Van Mechelen 4, N Van Remortel 4, A Van Spilbeeck 4, F Blekman 5, S Blyweert 5, J D’Hondt 5, N Daci 5, N Heracleous 5, J Keaveney 5, S Lowette 5, M Maes 5, A Olbrechts 5, Q Python 5, D Strom 5, S Tavernier 5, W Van Doninck 5, P Van Mulders 5, G P Van Onsem 5, I Villella 5, C Caillol 6, B Clerbaux 6, G De Lentdecker 6, D Dobur 6, L Favart 6, A P R Gay 6, A Grebenyuk 6, A Léonard 6, A Mohammadi 6, L Perniè 6, T Reis 6, T Seva 6, L Thomas 6, C Vander Velde 6, P Vanlaer 6, J Wang 6, F Zenoni 6, V Adler 7, K Beernaert 7, L Benucci 7, A Cimmino 7, S Costantini 7, S Crucy 7, S Dildick 7, A Fagot 7, G Garcia 7, J Mccartin 7, A A Ocampo Rios 7, D Ryckbosch 7, S Salva Diblen 7, M Sigamani 7, N Strobbe 7, F Thyssen 7, M Tytgat 7, E Yazgan 7, N Zaganidis 7, S Basegmez 8, C Beluffi 8, G Bruno 8, R Castello 8, A Caudron 8, L Ceard 8, G G Da Silveira 8, C Delaere 8, T du Pree 8, D Favart 8, L Forthomme 8, A Giammanco 8, J Hollar 8, A Jafari 8, P Jez 8, M Komm 8, V Lemaitre 8, C Nuttens 8, D Pagano 8, L Perrini 8, A Pin 8, K Piotrzkowski 8, A Popov 8, L Quertenmont 8, M Selvaggi 8, M Vidal Marono 8, J M Vizan Garcia 8, N Beliy 9, T Caebergs 9, E Daubie 9, G H Hammad 9, W L Aldá Júnior 10, G A Alves 10, L Brito 10, M Correa Martins Junior 10, T Dos Reis Martins 10, C Mora Herrera 10, M E Pol 10, W Carvalho 11, J Chinellato 11, A Custódio 11, E M Da Costa 11, D De Jesus Damiao 11, C De Oliveira Martins 11, S Fonseca De Souza 11, H Malbouisson 11, D Matos Figueiredo 11, L Mundim 11, H Nogima 11, W L Prado Da Silva 11, J Santaolalla 11, A Santoro 11, A Sznajder 11, E J Tonelli Manganote 11, A Vilela Pereira 11, C A Bernardes 12, S Dogra 12, T R Fernandez Perez Tomei 12, E M Gregores 12, P G Mercadante 12, S F Novaes 12, Sandra S Padula 12, A Aleksandrov 13, V Genchev 13, P Iaydjiev 13, A Marinov 13, S Piperov 13, M Rodozov 13, S Stoykova 13, G Sultanov 13, V Tcholakov 13, M Vutova 13, A Dimitrov 14, I Glushkov 14, R Hadjiiska 14, V Kozhuharov 14, L Litov 14, B Pavlov 14, P Petkov 14, J G Bian 15, G M Chen 15, H S Chen 15, M Chen 15, R Du 15, C H Jiang 15, R Plestina 15, F Romeo 15, J Tao 15, Z Wang 15, C Asawatangtrakuldee 16, Y Ban 16, Q Li 16, S Liu 16, Y Mao 16, S J Qian 16, D Wang 16, W Zou 16, C Avila 17, L F Chaparro Sierra 17, C Florez 17, J P Gomez 17, B Gomez Moreno 17, J C Sanabria 17, N Godinovic 18, D Lelas 18, D Polic 18, I Puljak 18, Z Antunovic 19, M Kovac 19, V Brigljevic 20, K Kadija 20, J Luetic 20, D Mekterovic 20, L Sudic 20, A Attikis 21, G Mavromanolakis 21, J Mousa 21, C Nicolaou 21, F Ptochos 21, P A Razis 21, M Bodlak 22, M Finger 22, M Finger Jr 22, Y Assran 23, A Ellithi Kamel 23, M A Mahmoud 23, A Radi 23, M Kadastik 24, M Murumaa 24, M Raidal 24, A Tiko 24, P Eerola 25, G Fedi 25, M Voutilainen 25, J Härkönen 26, V Karimäki 26, R Kinnunen 26, M J Kortelainen 26, T Lampén 26, K Lassila-Perini 26, S Lehti 26, T Lindén 26, P Luukka 26, T Mäenpää 26, T Peltola 26, E Tuominen 26, J Tuominiemi 26, E Tuovinen 26, L Wendland 26, J Talvitie 27, T Tuuva 27, M Besancon 28, F Couderc 28, M Dejardin 28, D Denegri 28, B Fabbro 28, J L Faure 28, C Favaro 28, F Ferri 28, S Ganjour 28, A Givernaud 28, P Gras 28, G Hamel de Monchenault 28, P Jarry 28, E Locci 28, J Malcles 28, J Rander 28, A Rosowsky 28, M Titov 28, S Baffioni 29, F Beaudette 29, P Busson 29, C Charlot 29, T Dahms 29, M Dalchenko 29, L Dobrzynski 29, N Filipovic 29, A Florent 29, R Granier de Cassagnac 29, L Mastrolorenzo 29, P Miné 29, C Mironov 29, I N Naranjo 29, M Nguyen 29, C Ochando 29, P Paganini 29, S Regnard 29, R Salerno 29, J B Sauvan 29, Y Sirois 29, C Veelken 29, Y Yilmaz 29, A Zabi 29, J-L Agram 30, J Andrea 30, A Aubin 30, D Bloch 30, J-M Brom 30, E C Chabert 30, C Collard 30, E Conte 30, J-C Fontaine 30, D Gelé 30, U Goerlach 30, C Goetzmann 30, A-C Le Bihan 30, P Van Hove 30, S Gadrat 31, S Beauceron 32, N Beaupere 32, G Boudoul 32, E Bouvier 32, S Brochet 32, C A Carrillo Montoya 32, J Chasserat 32, R Chierici 32, D Contardo 32, P Depasse 32, H El Mamouni 32, J Fan 32, J Fay 32, S Gascon 32, M Gouzevitch 32, B Ille 32, T Kurca 32, M Lethuillier 32, L Mirabito 32, S Perries 32, J D Ruiz Alvarez 32, D Sabes 32, L Sgandurra 32, V Sordini 32, M Vander Donckt 32, P Verdier 32, S Viret 32, H Xiao 32, I Bagaturia 33, C Autermann 34, S Beranek 34, M Bontenackels 34, M Edelhoff 34, L Feld 34, O Hindrichs 34, K Klein 34, A Ostapchuk 34, A Perieanu 34, F Raupach 34, J Sammet 34, S Schael 34, H Weber 34, B Wittmer 34, V Zhukov 34, M Ata 35, M Brodski 35, E Dietz-Laursonn 35, D Duchardt 35, M Erdmann 35, R Fischer 35, A Güth 35, T Hebbeker 35, C Heidemann 35, K Hoepfner 35, D Klingebiel 35, S Knutzen 35, P Kreuzer 35, M Merschmeyer 35, A Meyer 35, P Millet 35, M Olschewski 35, K Padeken 35, P Papacz 35, H Reithler 35, S A Schmitz 35, L Sonnenschein 35, D Teyssier 35, S Thüer 35, M Weber 35, V Cherepanov 36, Y Erdogan 36, G Flügge 36, H Geenen 36, M Geisler 36, W Haj Ahmad 36, A Heister 36, F Hoehle 36, B Kargoll 36, T Kress 36, Y Kuessel 36, A Künsken 36, J Lingemann 36, A Nowack 36, I M Nugent 36, L Perchalla 36, O Pooth 36, A Stahl 36, I Asin 37, N Bartosik 37, J Behr 37, W Behrenhoff 37, U Behrens 37, A J Bell 37, M Bergholz 37, A Bethani 37, K Borras 37, A Burgmeier 37, A Cakir 37, L Calligaris 37, A Campbell 37, S Choudhury 37, F Costanza 37, C Diez Pardos 37, S Dooling 37, T Dorland 37, G Eckerlin 37, D Eckstein 37, T Eichhorn 37, G Flucke 37, J Garay Garcia 37, A Geiser 37, P Gunnellini 37, J Hauk 37, M Hempel 37, D Horton 37, H Jung 37, A Kalogeropoulos 37, M Kasemann 37, P Katsas 37, J Kieseler 37, C Kleinwort 37, D Krücker 37, W Lange 37, J Leonard 37, K Lipka 37, A Lobanov 37, W Lohmann 37, B Lutz 37, R Mankel 37, I Marfin 37, I-A Melzer-Pellmann 37, A B Meyer 37, G Mittag 37, J Mnich 37, A Mussgiller 37, S Naumann-Emme 37, A Nayak 37, O Novgorodova 37, E Ntomari 37, H Perrey 37, D Pitzl 37, R Placakyte 37, A Raspereza 37, P M Ribeiro Cipriano 37, B Roland 37, E Ron 37, M Ö Sahin 37, J Salfeld-Nebgen 37, P Saxena 37, R Schmidt 37, T Schoerner-Sadenius 37, M Schröder 37, C Seitz 37, S Spannagel 37, A D R Vargas Trevino 37, R Walsh 37, C Wissing 37, M Aldaya Martin 38, V Blobel 38, M Centis Vignali 38, A R Draeger 38, J Erfle 38, E Garutti 38, K Goebel 38, M Görner 38, J Haller 38, M Hoffmann 38, R S Höing 38, H Kirschenmann 38, R Klanner 38, R Kogler 38, J Lange 38, T Lapsien 38, T Lenz 38, I Marchesini 38, J Ott 38, T Peiffer 38, N Pietsch 38, J Poehlsen 38, T Poehlsen 38, D Rathjens 38, C Sander 38, H Schettler 38, P Schleper 38, E Schlieckau 38, A Schmidt 38, M Seidel 38, V Sola 38, H Stadie 38, G Steinbrück 38, D Troendle 38, E Usai 38, L Vanelderen 38, A Vanhoefer 38, C Barth 39, C Baus 39, J Berger 39, C Böser 39, E Butz 39, T Chwalek 39, W De Boer 39, A Descroix 39, A Dierlamm 39, M Feindt 39, F Frensch 39, M Giffels 39, F Hartmann 39, T Hauth 39, U Husemann 39, I Katkov 39, A Kornmayer 39, E Kuznetsova 39, P Lobelle Pardo 39, M U Mozer 39, Th Müller 39, A Nürnberg 39, G Quast 39, K Rabbertz 39, F Ratnikov 39, S Röcker 39, G Sieber 39, H J Simonis 39, F M Stober 39, R Ulrich 39, J Wagner-Kuhr 39, S Wayand 39, T Weiler 39, R Wolf 39, G Anagnostou 40, G Daskalakis 40, T Geralis 40, V A Giakoumopoulou 40, A Kyriakis 40, D Loukas 40, A Markou 40, C Markou 40, A Psallidas 40, I Topsis-Giotis 40, A Agapitos 41, S Kesisoglou 41, A Panagiotou 41, N Saoulidou 41, E Stiliaris 41, X Aslanoglou 42, I Evangelou 42, G Flouris 42, C Foudas 42, P Kokkas 42, N Manthos 42, I Papadopoulos 42, E Paradas 42, G Bencze 43, C Hajdu 43, P Hidas 43, D Horvath 43, F Sikler 43, V Veszpremi 43, G Vesztergombi 43, A J Zsigmond 43, N Beni 44, S Czellar 44, J Karancsi 44, J Molnar 44, J Palinkas 44, Z Szillasi 44, P Raics 45, Z L Trocsanyi 45, B Ujvari 45, S K Swain 46, S B Beri 47, V Bhatnagar 47, R Gupta 47, U Bhawandeep 47, A K Kalsi 47, M Kaur 47, R Kumar 47, M Mittal 47, N Nishu 47, J B Singh 47, Ashok Kumar 48, Arun Kumar 48, S Ahuja 48, A Bhardwaj 48, B C Choudhary 48, A Kumar 48, S Malhotra 48, M Naimuddin 48, K Ranjan 48, V Sharma 48, S Banerjee 49, S Bhattacharya 49, K Chatterjee 49, S Dutta 49, B Gomber 49, Sa Jain 49, Sh Jain 49, R Khurana 49, A Modak 49, S Mukherjee 49, D Roy 49, S Sarkar 49, M Sharan 49, A Abdulsalam 50, D Dutta 50, S Kailas 50, V Kumar 50, A K Mohanty 50, L M Pant 50, P Shukla 50, A Topkar 50, T Aziz 51, S Banerjee 51, S Bhowmik 51, R M Chatterjee 51, R K Dewanjee 51, S Dugad 51, S Ganguly 51, S Ghosh 51, M Guchait 51, A Gurtu 51, G Kole 51, S Kumar 51, M Maity 51, G Majumder 51, K Mazumdar 51, G B Mohanty 51, B Parida 51, K Sudhakar 51, N Wickramage 51, H Bakhshiansohi 52, H Behnamian 52, S M Etesami 52, A Fahim 52, R Goldouzian 52, M Khakzad 52, M Mohammadi Najafabadi 52, M Naseri 52, S Paktinat Mehdiabadi 52, F Rezaei Hosseinabadi 52, B Safarzadeh 52, M Zeinali 52, M Felcini 53, M Grunewald 53, M Abbrescia 54, L Barbone 54, C Calabria 54, S S Chhibra 54, A Colaleo 54, D Creanza 54, N De Filippis 54, M De Palma 54, L Fiore 54, G Iaselli 54, G Maggi 54, M Maggi 54, S My 54, S Nuzzo 54, A Pompili 54, G Pugliese 54, R Radogna 54, G Selvaggi 54, L Silvestris 54, R Venditti 54, G Zito 54, G Abbiendi 55, A C Benvenuti 55, D Bonacorsi 55, S Braibant-Giacomelli 55, L Brigliadori 55, R Campanini 55, P Capiluppi 55, A Castro 55, F R Cavallo 55, G Codispoti 55, M Cuffiani 55, G M Dallavalle 55, F Fabbri 55, A Fanfani 55, D Fasanella 55, P Giacomelli 55, C Grandi 55, L Guiducci 55, S Marcellini 55, G Masetti 55, A Montanari 55, F L Navarria 55, A Perrotta 55, A M Rossi 55, F Primavera 55, T Rovelli 55, G P Siroli 55, N Tosi 55, R Travaglini 55, S Albergo 56, G Cappello 56, M Chiorboli 56, S Costa 56, F Giordano 56, R Potenza 56, A Tricomi 56, C Tuve 56, G Barbagli 57, V Ciulli 57, C Civinini 57, R D’Alessandro 57, E Focardi 57, E Gallo 57, S Gonzi 57, V Gori 57, P Lenzi 57, M Meschini 57, S Paoletti 57, G Sguazzoni 57, A Tropiano 57, L Benussi 58, S Bianco 58, F Fabbri 58, D Piccolo 58, R Ferretti 59, F Ferro 59, M Lo Vetere 59, E Robutti 59, S Tosi 59, M E Dinardo 60, S Fiorendi 60, S Gennai 60, R Gerosa 60, A Ghezzi 60, P Govoni 60, M T Lucchini 60, S Malvezzi 60, R A Manzoni 60, A Martelli 60, B Marzocchi 60, D Menasce 60, L Moroni 60, M Paganoni 60, D Pedrini 60, S Ragazzi 60, N Redaelli 60, T Tabarelli de Fatis 60, S Buontempo 61, N Cavallo 61, S Di Guida 61, F Fabozzi 61, A O M Iorio 61, L Lista 61, S Meola 61, M Merola 61, P Paolucci 61, P Azzi 62, N Bacchetta 62, D Bisello 62, A Branca 62, R Carlin 62, P Checchia 62, M Dall’Osso 62, T Dorigo 62, M Galanti 62, F Gasparini 62, U Gasparini 62, P Giubilato 62, A Gozzelino 62, K Kanishchev 62, S Lacaprara 62, M Margoni 62, A T Meneguzzo 62, J Pazzini 62, N Pozzobon 62, P Ronchese 62, F Simonetto 62, E Torassa 62, M Tosi 62, S Vanini 62, S Ventura 62, P Zotto 62, A Zucchetta 62, M Gabusi 63, S P Ratti 63, V Re 63, C Riccardi 63, P Salvini 63, P Vitulo 63, M Biasini 64, G M Bilei 64, D Ciangottini 64, L Fanò 64, P Lariccia 64, G Mantovani 64, M Menichelli 64, A Saha 64, A Santocchia 64, A Spiezia 64, K Androsov 65, P Azzurri 65, G Bagliesi 65, J Bernardini 65, T Boccali 65, G Broccolo 65, R Castaldi 65, M A Ciocci 65, R Dell’Orso 65, S Donato 65, G Fedi 65, F Fiori 65, L Foà 65, A Giassi 65, M T Grippo 65, F Ligabue 65, T Lomtadze 65, L Martini 65, A Messineo 65, C S Moon 65, F Palla 65, A Rizzi 65, A Savoy-Navarro 65, A T Serban 65, P Spagnolo 65, P Squillacioti 65, R Tenchini 65, G Tonelli 65, A Venturi 65, P G Verdini 65, C Vernieri 65, L Barone 66, F Cavallari 66, G D’imperio 66, D Del Re 66, M Diemoz 66, M Grassi 66, C Jorda 66, E Longo 66, F Margaroli 66, P Meridiani 66, F Micheli 66, S Nourbakhsh 66, G Organtini 66, R Paramatti 66, S Rahatlou 66, C Rovelli 66, F Santanastasio 66, L Soffi 66, P Traczyk 66, N Amapane 67, R Arcidiacono 67, S Argiro 67, M Arneodo 67, R Bellan 67, C Biino 67, N Cartiglia 67, S Casasso 67, M Costa 67, A Degano 67, N Demaria 67, L Finco 67, C Mariotti 67, S Maselli 67, E Migliore 67, V Monaco 67, M Musich 67, M M Obertino 67, G Ortona 67, L Pacher 67, N Pastrone 67, M Pelliccioni 67, G L Pinna Angioni 67, A Potenza 67, A Romero 67, M Ruspa 67, R Sacchi 67, A Solano 67, A Staiano 67, U Tamponi 67, S Belforte 68, V Candelise 68, M Casarsa 68, F Cossutti 68, G Della Ricca 68, B Gobbo 68, C La Licata 68, M Marone 68, A Schizzi 68, T Umer 68, A Zanetti 68, S Chang 69, T A Kropivnitskaya 69, S K Nam 69, D H Kim 70, G N Kim 70, M S Kim 70, M S Kim 70, D J Kong 70, S Lee 70, Y D Oh 70, H Park 70, A Sakharov 70, D C Son 70, T J Kim 71, J Y Kim 72, S Song 72, S Choi 73, D Gyun 73, B Hong 73, M Jo 73, H Kim 73, Y Kim 73, B Lee 73, K S Lee 73, S K Park 73, Y Roh 73, M Choi 74, J H Kim 74, I C Park 74, G Ryu 74, M S Ryu 74, Y Choi 75, Y K Choi 75, J Goh 75, D Kim 75, E Kwon 75, J Lee 75, H Seo 75, I Yu 75, A Juodagalvis 76, J R Komaragiri 77, M A B Md Ali 77, H Castilla-Valdez 78, E De La Cruz-Burelo 78, I Heredia-de La Cruz 78, A Hernandez-Almada 78, R Lopez-Fernandez 78, A Sanchez-Hernandez 78, S Carrillo Moreno 79, F Vazquez Valencia 79, I Pedraza 80, H A Salazar Ibarguen 80, E Casimiro Linares 81, A Morelos Pineda 81, D Krofcheck 82, P H Butler 83, S Reucroft 83, A Ahmad 84, M Ahmad 84, Q Hassan 84, H R Hoorani 84, S Khalid 84, W A Khan 84, T Khurshid 84, M A Shah 84, M Shoaib 84, H Bialkowska 85, M Bluj 85, B Boimska 85, T Frueboes 85, M Górski 85, M Kazana 85, K Nawrocki 85, K Romanowska-Rybinska 85, M Szleper 85, P Zalewski 85, G Brona 86, K Bunkowski 86, M Cwiok 86, W Dominik 86, K Doroba 86, A Kalinowski 86, M Konecki 86, J Krolikowski 86, M Misiura 86, M Olszewski 86, W Wolszczak 86, P Bargassa 87, C Beir ao Da Cruz E Silva 87, P Faccioli 87, P G Ferreira Parracho 87, M Gallinaro 87, L Lloret Iglesias 87, F Nguyen 87, J Rodrigues Antunes 87, J Seixas 87, J Varela 87, P Vischia 87, S Afanasiev 88, P Bunin 88, M Gavrilenko 88, I Golutvin 88, I Gorbunov 88, A Kamenev 88, V Karjavin 88, V Konoplyanikov 88, A Lanev 88, A Malakhov 88, V Matveev 88, P Moisenz 88, V Palichik 88, V Perelygin 88, S Shmatov 88, N Skatchkov 88, V Smirnov 88, A Zarubin 88, V Golovtsov 89, Y Ivanov 89, V Kim 89, P Levchenko 89, V Murzin 89, V Oreshkin 89, I Smirnov 89, V Sulimov 89, L Uvarov 89, S Vavilov 89, A Vorobyev 89, An Vorobyev 89, Yu Andreev 90, A Dermenev 90, S Gninenko 90, N Golubev 90, M Kirsanov 90, N Krasnikov 90, A Pashenkov 90, D Tlisov 90, A Toropin 90, V Epshteyn 91, V Gavrilov 91, N Lychkovskaya 91, V Popov 91, G Safronov 91, S Semenov 91, A Spiridonov 91, V Stolin 91, E Vlasov 91, A Zhokin 91, V Andreev 92, M Azarkin 92, I Dremin 92, M Kirakosyan 92, A Leonidov 92, G Mesyats 92, S V Rusakov 92, A Vinogradov 92, A Belyaev 93, E Boos 93, M Dubinin 93, L Dudko 93, A Ershov 93, A Gribushin 93, V Klyukhin 93, O Kodolova 93, I Lokhtin 93, S Obraztsov 93, S Petrushanko 93, V Savrin 93, A Snigirev 93, I Azhgirey 94, I Bayshev 94, S Bitioukov 94, V Kachanov 94, A Kalinin 94, D Konstantinov 94, V Krychkine 94, V Petrov 94, R Ryutin 94, A Sobol 94, L Tourtchanovitch 94, S Troshin 94, N Tyurin 94, A Uzunian 94, A Volkov 94, P Adzic 95, M Ekmedzic 95, J Milosevic 95, V Rekovic 95, J Alcaraz Maestre 96, C Battilana 96, E Calvo 96, M Cerrada 96, M Chamizo Llatas 96, N Colino 96, B De La Cruz 96, A Delgado Peris 96, D Domínguez Vázquez 96, A Escalante Del Valle 96, C Fernandez Bedoya 96, J P Fernández Ramos 96, J Flix 96, M C Fouz 96, P Garcia-Abia 96, O Gonzalez Lopez 96, S Goy Lopez 96, J M Hernandez 96, M I Josa 96, E Navarro De Martino 96, A Pérez-Calero Yzquierdo 96, J Puerta Pelayo 96, A Quintario Olmeda 96, I Redondo 96, L Romero 96, M S Soares 96, C Albajar 97, J F de Trocóniz 97, M Missiroli 97, D Moran 97, H Brun 98, J Cuevas 98, J Fernandez Menendez 98, S Folgueras 98, I Gonzalez Caballero 98, J A Brochero Cifuentes 99, I J Cabrillo 99, A Calderon 99, J Duarte Campderros 99, M Fernandez 99, G Gomez 99, A Graziano 99, A Lopez Virto 99, J Marco 99, R Marco 99, C Martinez Rivero 99, F Matorras 99, F J Munoz Sanchez 99, J Piedra Gomez 99, T Rodrigo 99, A Y Rodríguez-Marrero 99, A Ruiz-Jimeno 99, L Scodellaro 99, I Vila 99, R Vilar Cortabitarte 99, D Abbaneo 100, E Auffray 100, G Auzinger 100, M Bachtis 100, P Baillon 100, A H Ball 100, D Barney 100, A Benaglia 100, J Bendavid 100, L Benhabib 100, J F Benitez 100, C Bernet 100, G Bianchi 100, P Bloch 100, A Bocci 100, A Bonato 100, O Bondu 100, C Botta 100, H Breuker 100, T Camporesi 100, G Cerminara 100, S Colafranceschi 100, M D’Alfonso 100, D d’Enterria 100, A Dabrowski 100, A David 100, F De Guio 100, A De Roeck 100, S De Visscher 100, E Di Marco 100, M Dobson 100, M Dordevic 100, B Dorney 100, N Dupont-Sagorin 100, A Elliott-Peisert 100, J Eugster 100, G Franzoni 100, W Funk 100, D Gigi 100, K Gill 100, D Giordano 100, M Girone 100, F Glege 100, R Guida 100, S Gundacker 100, M Guthoff 100, J Hammer 100, M Hansen 100, P Harris 100, J Hegeman 100, V Innocente 100, P Janot 100, K Kousouris 100, K Krajczar 100, P Lecoq 100, C Lourenço 100, N Magini 100, L Malgeri 100, M Mannelli 100, J Marrouche 100, L Masetti 100, F Meijers 100, S Mersi 100, E Meschi 100, F Moortgat 100, S Morovic 100, M Mulders 100, P Musella 100, L Orsini 100, L Pape 100, E Perez 100, L Perrozzi 100, A Petrilli 100, G Petrucciani 100, A Pfeiffer 100, M Pierini 100, M Pimiä 100, D Piparo 100, M Plagge 100, A Racz 100, G Rolandi 100, M Rovere 100, H Sakulin 100, C Schäfer 100, C Schwick 100, A Sharma 100, P Siegrist 100, P Silva 100, M Simon 100, P Sphicas 100, D Spiga 100, J Steggemann 100, B Stieger 100, M Stoye 100, Y Takahashi 100, D Treille 100, A Tsirou 100, G I Veres 100, N Wardle 100, H K Wöhri 100, H Wollny 100, W D Zeuner 100, W Bertl 101, K Deiters 101, W Erdmann 101, R Horisberger 101, Q Ingram 101, H C Kaestli 101, D Kotlinski 101, U Langenegger 101, D Renker 101, T Rohe 101, F Bachmair 102, L Bäni 102, L Bianchini 102, M A Buchmann 102, B Casal 102, N Chanon 102, G Dissertori 102, M Dittmar 102, M Donegà 102, M Dünser 102, P Eller 102, C Grab 102, D Hits 102, J Hoss 102, W Lustermann 102, B Mangano 102, A C Marini 102, P Martinez Ruiz del Arbol 102, M Masciovecchio 102, D Meister 102, N Mohr 102, C Nägeli 102, F Nessi-Tedaldi 102, F Pandolfi 102, F Pauss 102, M Peruzzi 102, M Quittnat 102, L Rebane 102, M Rossini 102, A Starodumov 102, M Takahashi 102, K Theofilatos 102, R Wallny 102, H A Weber 102, C Amsler 103, M F Canelli 103, V Chiochia 103, A De Cosa 103, A Hinzmann 103, T Hreus 103, B Kilminster 103, C Lange 103, B Millan Mejias 103, J Ngadiuba 103, P Robmann 103, F J Ronga 103, S Taroni 103, M Verzetti 103, Y Yang 103, M Cardaci 104, K H Chen 104, C Ferro 104, C M Kuo 104, W Lin 104, Y J Lu 104, R Volpe 104, S S Yu 104, P Chang 105, Y H Chang 105, Y W Chang 105, Y Chao 105, K F Chen 105, P H Chen 105, C Dietz 105, U Grundler 105, W-S Hou 105, K Y Kao 105, Y J Lei 105, Y F Liu 105, R-S Lu 105, D Majumder 105, E Petrakou 105, Y M Tzeng 105, R Wilken 105, B Asavapibhop 106, G Singh 106, N Srimanobhas 106, N Suwonjandee 106, A Adiguzel 107, M N Bakirci 107, S Cerci 107, C Dozen 107, I Dumanoglu 107, E Eskut 107, S Girgis 107, G Gokbulut 107, E Gurpinar 107, I Hos 107, E E Kangal 107, A Kayis Topaksu 107, G Onengut 107, K Ozdemir 107, S Ozturk 107, A Polatoz 107, D Sunar Cerci 107, B Tali 107, H Topakli 107, M Vergili 107, I V Akin 108, B Bilin 108, S Bilmis 108, H Gamsizkan 108, B Isildak 108, G Karapinar 108, K Ocalan 108, S Sekmen 108, U E Surat 108, M Yalvac 108, M Zeyrek 108, E Gülmez 109, B Isildak 109, M Kaya 109, O Kaya 109, K Cankocak 110, F I Vardarlı 110, L Levchuk 111, P Sorokin 111, J J Brooke 112, E Clement 112, D Cussans 112, H Flacher 112, J Goldstein 112, M Grimes 112, G P Heath 112, H F Heath 112, J Jacob 112, L Kreczko 112, C Lucas 112, Z Meng 112, D M Newbold 112, S Paramesvaran 112, A Poll 112, S Senkin 112, V J Smith 112, T Williams 112, K W Bell 113, A Belyaev 113, C Brew 113, R M Brown 113, D J A Cockerill 113, J A Coughlan 113, K Harder 113, S Harper 113, E Olaiya 113, D Petyt 113, C H Shepherd-Themistocleous 113, A Thea 113, I R Tomalin 113, W J Womersley 113, S D Worm 113, M Baber 114, R Bainbridge 114, O Buchmuller 114, D Burton 114, D Colling 114, N Cripps 114, M Cutajar 114, P Dauncey 114, G Davies 114, M Della Negra 114, P Dunne 114, W Ferguson 114, J Fulcher 114, D Futyan 114, A Gilbert 114, G Hall 114, G Iles 114, M Jarvis 114, G Karapostoli 114, M Kenzie 114, R Lane 114, R Lucas 114, L Lyons 114, A-M Magnan 114, S Malik 114, B Mathias 114, J Nash 114, A Nikitenko 114, J Pela 114, M Pesaresi 114, K Petridis 114, D M Raymond 114, S Rogerson 114, A Rose 114, C Seez 114, P Sharp 114, A Tapper 114, M Vazquez Acosta 114, T Virdee 114, S C Zenz 114, J E Cole 115, P R Hobson 115, A Khan 115, P Kyberd 115, D Leggat 115, D Leslie 115, W Martin 115, I D Reid 115, P Symonds 115, L Teodorescu 115, M Turner 115, J Dittmann 116, K Hatakeyama 116, A Kasmi 116, H Liu 116, T Scarborough 116, O Charaf 117, S I Cooper 117, C Henderson 117, P Rumerio 117, A Avetisyan 118, T Bose 118, C Fantasia 118, P Lawson 118, C Richardson 118, J Rohlf 118, J St John 118, L Sulak 118, J Alimena 119, E Berry 119, S Bhattacharya 119, G Christopher 119, D Cutts 119, Z Demiragli 119, N Dhingra 119, A Ferapontov 119, A Garabedian 119, U Heintz 119, G Kukartsev 119, E Laird 119, G Landsberg 119, M Luk 119, M Narain 119, M Segala 119, T Sinthuprasith 119, T Speer 119, J Swanson 119, R Breedon 120, G Breto 120, M Calderon De La Barca Sanchez 120, S Chauhan 120, M Chertok 120, J Conway 120, R Conway 120, P T Cox 120, R Erbacher 120, M Gardner 120, W Ko 120, R Lander 120, T Miceli 120, M Mulhearn 120, D Pellett 120, J Pilot 120, F Ricci-Tam 120, M Searle 120, S Shalhout 120, J Smith 120, M Squires 120, D Stolp 120, M Tripathi 120, S Wilbur 120, R Yohay 120, R Cousins 121, P Everaerts 121, C Farrell 121, J Hauser 121, M Ignatenko 121, G Rakness 121, E Takasugi 121, V Valuev 121, M Weber 121, K Burt 122, R Clare 122, J Ellison 122, J W Gary 122, G Hanson 122, J Heilman 122, M Ivova Rikova 122, P Jandir 122, E Kennedy 122, F Lacroix 122, O R Long 122, A Luthra 122, M Malberti 122, H Nguyen 122, M Olmedo Negrete 122, A Shrinivas 122, S Sumowidagdo 122, S Wimpenny 122, W Andrews 123, J G Branson 123, G B Cerati 123, S Cittolin 123, R T D’Agnolo 123, D Evans 123, A Holzner 123, R Kelley 123, D Klein 123, M Lebourgeois 123, J Letts 123, I Macneill 123, D Olivito 123, S Padhi 123, C Palmer 123, M Pieri 123, M Sani 123, V Sharma 123, S Simon 123, E Sudano 123, M Tadel 123, Y Tu 123, A Vartak 123, C Welke 123, F Würthwein 123, A Yagil 123, D Barge 124, J Bradmiller-Feld 124, C Campagnari 124, T Danielson 124, A Dishaw 124, K Flowers 124, M Franco Sevilla 124, P Geffert 124, C George 124, F Golf 124, L Gouskos 124, J Incandela 124, C Justus 124, N Mccoll 124, J Richman 124, D Stuart 124, W To 124, C West 124, J Yoo 124, A Apresyan 125, A Bornheim 125, J Bunn 125, Y Chen 125, J Duarte 125, A Mott 125, H B Newman 125, C Pena 125, C Rogan 125, M Spiropulu 125, V Timciuc 125, J R Vlimant 125, R Wilkinson 125, S Xie 125, R Y Zhu 125, V Azzolini 126, A Calamba 126, B Carlson 126, T Ferguson 126, Y Iiyama 126, M Paulini 126, J Russ 126, H Vogel 126, I Vorobiev 126, J P Cumalat 127, W T Ford 127, A Gaz 127, E Luiggi Lopez 127, U Nauenberg 127, J G Smith 127, K Stenson 127, K A Ulmer 127, S R Wagner 127, J Alexander 128, A Chatterjee 128, J Chu 128, S Dittmer 128, N Eggert 128, N Mirman 128, G Nicolas Kaufman 128, J R Patterson 128, A Ryd 128, E Salvati 128, L Skinnari 128, W Sun 128, W D Teo 128, J Thom 128, J Thompson 128, J Tucker 128, Y Weng 128, L Winstrom 128, P Wittich 128, D Winn 129, S Abdullin 130, M Albrow 130, J Anderson 130, G Apollinari 130, L A T Bauerdick 130, A Beretvas 130, J Berryhill 130, P C Bhat 130, G Bolla 130, K Burkett 130, J N Butler 130, H W K Cheung 130, F Chlebana 130, S Cihangir 130, V D Elvira 130, I Fisk 130, J Freeman 130, Y Gao 130, E Gottschalk 130, L Gray 130, D Green 130, S Grünendahl 130, O Gutsche 130, J Hanlon 130, D Hare 130, R M Harris 130, J Hirschauer 130, B Hooberman 130, S Jindariani 130, M Johnson 130, U Joshi 130, K Kaadze 130, B Klima 130, B Kreis 130, S Kwan 130, J Linacre 130, D Lincoln 130, R Lipton 130, T Liu 130, J Lykken 130, K Maeshima 130, J M Marraffino 130, V I Martinez Outschoorn 130, S Maruyama 130, D Mason 130, P McBride 130, P Merkel 130, K Mishra 130, S Mrenna 130, Y Musienko 130, S Nahn 130, C Newman-Holmes 130, V O’Dell 130, O Prokofyev 130, E Sexton-Kennedy 130, S Sharma 130, A Soha 130, W J Spalding 130, L Spiegel 130, L Taylor 130, S Tkaczyk 130, N V Tran 130, L Uplegger 130, E W Vaandering 130, R Vidal 130, A Whitbeck 130, J Whitmore 130, F Yang 130, D Acosta 131, P Avery 131, P Bortignon 131, D Bourilkov 131, M Carver 131, T Cheng 131, D Curry 131, S Das 131, M De Gruttola 131, G P Di Giovanni 131, R D Field 131, M Fisher 131, I K Furic 131, J Hugon 131, J Konigsberg 131, A Korytov 131, T Kypreos 131, J F Low 131, K Matchev 131, P Milenovic 131, G Mitselmakher 131, L Muniz 131, A Rinkevicius 131, L Shchutska 131, M Snowball 131, D Sperka 131, J Yelton 131, M Zakaria 131, S Hewamanage 132, S Linn 132, P Markowitz 132, G Martinez 132, J L Rodriguez 132, T Adams 133, A Askew 133, J Bochenek 133, B Diamond 133, J Haas 133, S Hagopian 133, V Hagopian 133, K F Johnson 133, H Prosper 133, V Veeraraghavan 133, M Weinberg 133, M M Baarmand 134, M Hohlmann 134, H Kalakhety 134, F Yumiceva 134, M R Adams 135, L Apanasevich 135, V E Bazterra 135, D Berry 135, R R Betts 135, I Bucinskaite 135, R Cavanaugh 135, O Evdokimov 135, L Gauthier 135, C E Gerber 135, D J Hofman 135, S Khalatyan 135, P Kurt 135, D H Moon 135, C O’Brien 135, C Silkworth 135, P Turner 135, N Varelas 135, E A Albayrak 136, B Bilki 136, W Clarida 136, K Dilsiz 136, F Duru 136, M Haytmyradov 136, J-P Merlo 136, H Mermerkaya 136, A Mestvirishvili 136, A Moeller 136, J Nachtman 136, H Ogul 136, Y Onel 136, F Ozok 136, A Penzo 136, R Rahmat 136, S Sen 136, P Tan 136, E Tiras 136, J Wetzel 136, T Yetkin 136, K Yi 136, B A Barnett 137, B Blumenfeld 137, S Bolognesi 137, D Fehling 137, A V Gritsan 137, P Maksimovic 137, C Martin 137, M Swartz 137, P Baringer 138, A Bean 138, G Benelli 138, C Bruner 138, R P Kenny III 138, M Malek 138, M Murray 138, D Noonan 138, S Sanders 138, J Sekaric 138, R Stringer 138, Q Wang 138, J S Wood 138, A F Barfuss 139, I Chakaberia 139, A Ivanov 139, S Khalil 139, M Makouski 139, Y Maravin 139, L K Saini 139, S Shrestha 139, N Skhirtladze 139, I Svintradze 139, J Gronberg 140, D Lange 140, F Rebassoo 140, D Wright 140, A Baden 141, A Belloni 141, B Calvert 141, S C Eno 141, J A Gomez 141, N J Hadley 141, R G Kellogg 141, T Kolberg 141, Y Lu 141, M Marionneau 141, A C Mignerey 141, K Pedro 141, A Skuja 141, M B Tonjes 141, S C Tonwar 141, A Apyan 142, R Barbieri 142, G Bauer 142, W Busza 142, I A Cali 142, M Chan 142, L Di Matteo 142, V Dutta 142, G Gomez Ceballos 142, M Goncharov 142, D Gulhan 142, M Klute 142, Y S Lai 142, Y-J Lee 142, A Levin 142, P D Luckey 142, T Ma 142, C Paus 142, D Ralph 142, C Roland 142, G Roland 142, G S F Stephans 142, F Stöckli 142, K Sumorok 142, D Velicanu 142, J Veverka 142, B Wyslouch 142, M Yang 142, M Zanetti 142, V Zhukova 142, B Dahmes 143, A Gude 143, S C Kao 143, K Klapoetke 143, Y Kubota 143, J Mans 143, N Pastika 143, R Rusack 143, A Singovsky 143, N Tambe 143, J Turkewitz 143, J G Acosta 144, S Oliveros 144, E Avdeeva 145, K Bloom 145, S Bose 145, D R Claes 145, A Dominguez 145, R Gonzalez Suarez 145, J Keller 145, D Knowlton 145, I Kravchenko 145, J Lazo-Flores 145, S Malik 145, F Meier 145, G R Snow 145, M Zvada 145, J Dolen 146, A Godshalk 146, I Iashvili 146, A Kharchilava 146, A Kumar 146, S Rappoccio 146, G Alverson 147, E Barberis 147, D Baumgartel 147, M Chasco 147, J Haley 147, A Massironi 147, D M Morse 147, D Nash 147, T Orimoto 147, D Trocino 147, R J Wang 147, D Wood 147, J Zhang 147, K A Hahn 148, A Kubik 148, N Mucia 148, N Odell 148, B Pollack 148, A Pozdnyakov 148, M Schmitt 148, S Stoynev 148, K Sung 148, M Velasco 148, S Won 148, A Brinkerhoff 149, K M Chan 149, A Drozdetskiy 149, M Hildreth 149, C Jessop 149, D J Karmgard 149, N Kellams 149, K Lannon 149, W Luo 149, S Lynch 149, N Marinelli 149, T Pearson 149, M Planer 149, R Ruchti 149, N Valls 149, M Wayne 149, M Wolf 149, A Woodard 149, L Antonelli 150, J Brinson 150, B Bylsma 150, L S Durkin 150, S Flowers 150, C Hill 150, R Hughes 150, K Kotov 150, T Y Ling 150, D Puigh 150, M Rodenburg 150, G Smith 150, B L Winer 150, H Wolfe 150, H W Wulsin 150, O Driga 151, P Elmer 151, P Hebda 151, A Hunt 151, S A Koay 151, P Lujan 151, D Marlow 151, T Medvedeva 151, M Mooney 151, J Olsen 151, P Piroué 151, X Quan 151, H Saka 151, D Stickland 151, C Tully 151, J S Werner 151, A Zuranski 151, E Brownson 152, H Mendez 152, J E Ramirez Vargas 152, V E Barnes 153, D Benedetti 153, D Bortoletto 153, M De Mattia 153, L Gutay 153, Z Hu 153, M K Jha 153, M Jones 153, K Jung 153, M Kress 153, N Leonardo 153, D Lopes Pegna 153, V Maroussov 153, D H Miller 153, N Neumeister 153, B C Radburn-Smith 153, X Shi 153, I Shipsey 153, D Silvers 153, A Svyatkovskiy 153, F Wang 153, W Xie 153, L Xu 153, H D Yoo 153, J Zablocki 153, Y Zheng 153, N Parashar 154, J Stupak 154, A Adair 155, B Akgun 155, K M Ecklund 155, F J M Geurts 155, W Li 155, B Michlin 155, B P Padley 155, R Redjimi 155, J Roberts 155, J Zabel 155, B Betchart 156, A Bodek 156, R Covarelli 156, P de Barbaro 156, R Demina 156, Y Eshaq 156, T Ferbel 156, A Garcia-Bellido 156, P Goldenzweig 156, J Han 156, A Harel 156, A Khukhunaishvili 156, G Petrillo 156, D Vishnevskiy 156, R Ciesielski 157, L Demortier 157, K Goulianos 157, G Lungu 157, C Mesropian 157, S Arora 158, A Barker 158, J P Chou 158, C Contreras-Campana 158, E Contreras-Campana 158, D Duggan 158, D Ferencek 158, Y Gershtein 158, R Gray 158, E Halkiadakis 158, D Hidas 158, S Kaplan 158, A Lath 158, S Panwalkar 158, M Park 158, R Patel 158, S Salur 158, S Schnetzer 158, S Somalwar 158, R Stone 158, S Thomas 158, P Thomassen 158, M Walker 158, K Rose 159, S Spanier 159, A York 159, O Bouhali 160, A Castaneda Hernandez 160, R Eusebi 160, W Flanagan 160, J Gilmore 160, T Kamon 160, V Khotilovich 160, V Krutelyov 160, R Montalvo 160, I Osipenkov 160, Y Pakhotin 160, A Perloff 160, J Roe 160, A Rose 160, A Safonov 160, T Sakuma 160, I Suarez 160, A Tatarinov 160, N Akchurin 161, C Cowden 161, J Damgov 161, C Dragoiu 161, P R Dudero 161, J Faulkner 161, K Kovitanggoon 161, S Kunori 161, S W Lee 161, T Libeiro 161, I Volobouev 161, E Appelt 162, A G Delannoy 162, S Greene 162, A Gurrola 162, W Johns 162, C Maguire 162, Y Mao 162, A Melo 162, M Sharma 162, P Sheldon 162, B Snook 162, S Tuo 162, J Velkovska 162, M W Arenton 163, S Boutle 163, B Cox 163, B Francis 163, J Goodell 163, R Hirosky 163, A Ledovskoy 163, H Li 163, C Lin 163, C Neu 163, J Wood 163, C Clarke 164, R Harr 164, P E Karchin 164, C Kottachchi Kankanamge Don 164, P Lamichhane 164, J Sturdy 164, D A Belknap 165, D Carlsmith 165, M Cepeda 165, S Dasu 165, L Dodd 165, S Duric 165, E Friis 165, R Hall-Wilton 165, M Herndon 165, A Hervé 165, P Klabbers 165, A Lanaro 165, C Lazaridis 165, A Levine 165, R Loveless 165, A Mohapatra 165, I Ojalvo 165, T Perry 165, G A Pierro 165, G Polese 165, I Ross 165, T Sarangi 165, A Savin 165, W H Smith 165, D Taylor 165, P Verwilligen 165, C Vuosalo 165, N Woods 165, [Authorinst]The CMS Collaboration 166,
PMCID: PMC4423910  PMID: 25983654

Abstract

This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton–proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5fb-1collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445–3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant αS is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of αS(MZ)=0.1171±0.0013(exp)-0.0047+0.0073(theo).

Keywords: CMS, Physics, QCD, Jets, 3-jet mass, PDF , Strong coupling constant, Alpha-S

Introduction

A key characteristic of highly energetic proton–proton collisions at the LHC is the abundant production of multijet events. At high transverse momenta pT, such events are described by quantum chromodynamics (QCD) in terms of parton–parton scattering. The simplest jet production process corresponds to a 22 reaction with the two outgoing partons fragmenting into a pair of jets. Two cross sections, for which the leading-order (LO) predictions in perturbative QCD (pQCD) are proportional to the square of the strong coupling constant, αS2, are conventionally defined: the inclusive single-jet cross section as a function of jet pT and rapidity y, and the 2-jet production cross section as a function of the 2-jet invariant mass and a rapidity-related kinematic quantity that provides a separation of the phase space into exclusive bins. The ATLAS Collaboration usually characterizes the 2-jet system in terms of the rapidity separation of the two jets leading in pT, while CMS employs the larger of the two absolute rapidities of the two jets. Corresponding measurements by the ATLAS and CMS Collaborations can be found in Refs. [16].

In this paper, the inclusive 3-jet production differential cross section is measured as a function of the invariant mass m3 of the three jets leading in pT and of their maximum rapidity ymax, which are defined as follows:

m32=p1+p2+p32ymax=sgn(|max(y1,y2,y3)|-|min(y1,y2,y3)|)·max|y1|,|y2|,|y3|, 1
m32=p1+p2+p32ymax=sgn(|max(y1,y2,y3)|-|min(y1,y2,y3)|)·max|y1|,|y2|,|y3|, 2

where pi and yi are the four-momentum and rapidity of the ith jet leading in pT. Following Ref. [3], ymax is defined as a signed quantity such that the double-differential cross section, d2σ/dm3dymax, can be written in a way similar to the inclusive jet cross section, d2σ/dpTdy, including a factor of 2 for rapidity bin widths in terms of |ymax| and |y|, respectively. The absolute value of ymax is equal to the maximum |y| of the jets, denoted |y|max. A previous study of the 3-jet mass spectra was published by the D0 Collaboration [7]. Very recently, ATLAS submitted a 3-jet cross section measurement [8].

For this cross section, the LO process is proportional to αS3 and theoretical predictions are available up to next-to-leading order (NLO) [9, 10] making precise comparisons to data possible. The potential impact of this measurement on the parton distribution functions (PDFs) of the proton is studied and the strong coupling constant αS is extracted. In previous publications by CMS, the value of αS was determined to αS(MZ)=0.1148±0.0014(exp)±0.0050(theo) by investigating the ratio of inclusive 3-jet to inclusive 2-jet production, R32  [11], and αS(MZ)=0.1185±0.0019(exp)-0.0037+0.0060(theo) by fitting the inclusive jet cross section [12]. The ratio R32 benefits from uncertainty cancellations, but it is only proportional to αS at LO, leading to a correspondingly high sensitivity to its experimental uncertainties in fits of αS(MZ). The second observable, which is similar to the denominator in R32, is proportional to αS2 at LO with a sensitivity to experimental uncertainties reduced by a factor of 1/2, but without uncertainty cancellations. It is interesting to study how fits of αS to the inclusive 3-jet mass cross section, d2σ/dm3dymax, which is a 3-jet observable similar to the numerator of R32, compare to previous results.

The data analyzed in the following were recorded by the CMS detector at the LHC during the 2011 data-taking period at a proton–proton centre-of-mass energy of 7 TeV and correspond to an integrated luminosity of 5.0fb-1. Jets are clustered by using the infrared- and collinear-safe anti-kT algorithm [13] as implemented in the FastJet package [14] with a jet size parameter of R=0.7. A smaller jet size parameter of R=0.5 has been investigated, but was found to describe the data less well. Similarly, in Ref. [15] it is shown that the inclusive jet cross section is better described by NLO theory for R=0.7 than for R=0.5.

Events are studied in which at least three jets are found up to a rapidity of |y|=3 that are above a minimal pT threshold of 100 GeV. The jet yields are corrected for detector effects resulting in a final measurement phase space of 445GeVm3<3270GeV and |y|max<2. Extension of the analysis to larger values of |y|max was not feasible with the available trigger paths.

This paper is divided into seven parts. Section 2 presents an overview of the CMS detector and the event reconstruction. Sections 3 and 4 discuss the event selection and present the measurement. Theoretical ingredients are introduced in Sect. 5 and are applied in Sect. 6 to determine αS(MZ) from a fit to the measured 3-jet production cross section. Conclusions are presented in Sect. 7.

Apparatus and event reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors.

The first level (L1) of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select the most interesting events in a fixed time interval of less than 4μs. The high level trigger (HLT) processor farm further decreases the event rate from around 100 kHz to around 400 Hz, before data storage.

The particle-flow algorithm reconstructs and identifies each particle candidate with an optimized combination of all subdetector information [16, 17]. For each event, the reconstructed particle candidates are clustered into hadronic jets by using the anti-kT algorithm with a jet size parameter of R=0.7. The jet momentum is determined as the vectorial sum of all constituent momenta in this jet, and is found in the simulation to be within 5–10 % of the true momentum over the whole pT spectrum and detector acceptance. An offset correction is applied to take into account the extra energy clustered into jets due to additional proton–proton interactions within the same or neighbouring bunch crossings (pileup). Jet energy corrections are derived from the simulation, and are confirmed with in situ measurements with the energy balance of dijet, photon+jet, and Z+jet events [18, 19]. The jet energy resolution amounts typically to 15 % at 10 GeV, 8 % at 100 GeV, and 4 % at 1 TeV. A more detailed description of the CMS apparatus can be found in Ref. [20].

Event selection

The data set used for this analysis contains all events that were triggered by any of the single-jet triggers. A single-jet trigger accepts events if at least one reconstructed jet surpasses a transverse momentum threshold. During the 2011 data-taking period, triggers with eight different thresholds ranging from 60 to 370 GeV were employed. They are listed in Table 1 with the number of events recorded by each trigger and the corresponding turn-on threshold pT,99%, where the trigger is more than 99 % efficient.

Table 1.

Trigger and turn-on thresholds in leading jet pT, and the number of events recorded via the single-jet trigger paths used for this measurement

Trigger threshold Turn-on threshold Recorded events
pT (GeV) pT,99% (GeV )
60 85 2 591 154
80 110 1 491 011
110 144 2 574 451
150 192 2 572 083
190 238 3 533 874
240 294 3 629 577
300 355 9 785 529
370 435 3 129 458

The different triggers are used to measure the 3-jet mass spectrum in mutually exclusive regions of the phase space, defined in terms of the pT of the leading jet: the pT interval covered by a single-jet trigger starts at the corresponding turn-on threshold pT,99% and ends at the turn-on threshold of the trigger with the next highest threshold. The final 3-jet mass spectrum is obtained by summing the spectra measured with the different triggers while taking trigger prescale factors into account. Apart from the prescaling, the trigger efficiency is more than 99 % across the entire mass range studied.

In the inner rapidity region, most single-jet triggers contribute up to 50 % of the final event yield, with the exception of the two triggers with the lowest and highest threshold, which contribute up to 80 and 100 % respectively, depending on m3. In particular, starting at 1100 GeV, the majority of the events are taken from the highest unprescaled trigger. In the outer rapidity region, each jet trigger contributes over a large range of three-jet masses to the measurement. With the exception of the two triggers with the lowest and highest thresholds, each trigger contributes around 25 % to the final event yield.

The recorded events are filtered with tracking-based selections [21] to remove interactions between the circulating proton bunches and residual gas particles or the beam collimators. To further reject beam backgrounds and off-centre parasitic bunch crossings, standard vertex selection cuts are applied [21]. To enhance the QCD event purity, events in which the missing transverse energy ETmiss amounts to more than 30 % of the measured total transverse energy are removed. The missing transverse energy is calculated by requiring momentum conservation for the reconstructed particle flow candidates [19].

Jet identification (jet ID) selection criteria [22] are developed to reject pure noise or noise enhanced jets, while keeping more than 99 % of physical jets with transverse momentum above 10 GeV. In contrast to the previous selection criteria, which reject complete events, the jet ID removes only individual jets from the event. The jet ID applied to the particle-flow jets requires that each jet should contain at least two particles, one of which is a charged hadron. In addition, the jet energy fraction carried by neutral hadrons and photons must be less than 90 %. These criteria have an efficiency greater than 99 % for hadronic jets.

Measurement and experimental uncertainties

The double-differential 3-jet production cross section is measured as a function of the invariant 3-jet mass m3 and the maximum rapidity ymax of the three jets with the highest transverse momenta in the event:

d2σdm3dymax=1ϵLNΔm3(2Δ|y|max). 3

Here, L is the integrated luminosity and N is the number of events. The efficiency ϵ is the product of the trigger and event selection efficiencies, and differs from unity by less than one percent for this jet analysis. Differences in the efficiency with respect to unity are included in a systematic uncertainty. The width of a 3-jet mass bin is based on the 3-jet mass resolution, which is derived from a detector simulation. Starting at m3=50GeV, the bin width increases progressively with m3. In addition, the phase space is split into an inner, |y|max<1, and an outer, 1|y|max<2, rapidity region. The bin widths in ymax are equal to 2. Events with |y|max2 are rejected.

To remove the impact of detector effects from limited acceptance and finite resolution, the measurement is corrected with the iterative d’Agostini unfolding algorithm [23] with four iterations. Response matrices for the unfolding algorithm are derived from detector simulation by using the two event generators pythia version 6.4.22 [24] with tune Z2 [25] and herwig++ version 2.4.2 [26] with the default tune. (The pythia 6 Z2 tune is identical to the Z1 tune described in [25] except that Z2 uses the CTEQ6L PDF while Z1 uses CTEQ5L.) Differences in the unfolding result are used to evaluate the uncertainties related to assumptions in modelling the parton showering [27, 28], hadronization [2932], and the underlying event [27, 33, 34] in these event generators. Additional uncertainties are determined from an ensemble of Monte Carlo (MC) experiments, where the data input and the response matrix are varied within the limits of their statistical precision before entering the unfolding algorithm. The unfolding result corresponds to the sample mean, while the statistical uncertainty, which is propagated through the unfolding procedure, is given by the sample covariance. The variation of the input data leads to the statistical uncertainty in the unfolded cross section, while the variation of the response matrix is an additional uncertainty inherent in the unfolding technique because of the limited size of simulated samples.

The systematic uncertainty related to the determination of the jet energy scale (JES) is evaluated via 16 independent sources as described in Ref. [3]. The modified prescription for the treatment of correlations as recommended in Ref. [12] is applied. To reduce artifacts caused by trigger turn-ons and prescale weights, the JES uncertainty is propagated to the cross section measurement by employing an ensemble of MC experiments, where the data input is varied within the limits of the systematic uncertainty and where average prescale weights are used.

The luminosity uncertainty, which is fully correlated across all m3 and ymax bins, is estimated to be 2.2 % [35].

Residual jet reconstruction and trigger inefficiencies are accounted for by an additional uncorrelated uncertainty of 1 % as in Ref. [3].

Figure 1 presents an overview of the experimental uncertainties for the 3-jet mass measurement. Over a wide range of 3-jet masses, the JES uncertainty represents the largest contribution. At the edges of the investigated phase space, i.e. in the low and high 3-jet mass regions, statistical and unfolding uncertainties, which are intrinsically linked through the unfolding procedure, become major contributors to the total uncertainty.

Fig. 1.

Fig. 1

Overview of the measurement uncertainties in the inner |y|max<1 (top) and the outer rapidity region 1|y|max<2 (bottom). All uncertainty components, including the 1 % uncorrelated residual uncertainty, are added in quadrature to give the total uncertainty

Theoretical predictions and uncertainties

The theoretical predictions for the 3-jet mass cross sections consist of an NLO QCD calculation and a nonperturbative (NP) correction to account for the underlying event modelled by multiparton interactions (MPI) and for hadronization effects. Electroweak corrections to inclusive and dijet cross sections have been calculated in Ref. [36], where they are found to be limited to a few percent at the highest dijet masses accessible with the CMS data at 7 TeV centre-of-mass energy. For 3-jet quantities these corrections are not known and hence cannot be considered in the present analysis.

The NLO calculations are performed by using the NLOJet++ program version 4.1.3 [9, 10] within the framework of the fastNLO package version 2.1 [37]. The partonic events are subjected to the same jet algorithm and phase space selections as the data events, where at least three jets with |y|3 and pT>100GeV are required. The number of massless quark flavours, Nf, is set to five. The impact of jet production via massive top-antitop quark pairs is estimated to be negligible. The renormalization and factorization scales, μr and μf, are identified with m3/2. With this choice, which is identical to the jet pT in case of dijet events at central rapidity with m2/2 as scale, the NLO corrections to the LO cross sections remain limited between 1.2 and 1.6. The uncertainty in the predicted cross section associated with the renormalization and factorization scale choice is evaluated by varying μr and μf from the default by the following six combinations: (μr/(m3/2),μf/(m3/2))=(1/2,1/2), (1/2,1), (1,1/2), (1,2), (2,1), and (2,2).

Comparisons to the NLO predictions are performed for five different PDF sets, each with NLO and NNLO PDF evolutions, from the LHAPDF package [38]. They are listed in Table 2 together with the corresponding number of active flavours, Nf, the default values of the strong coupling constant αS(MZ), and the ranges in αS(MZ) available for fits. All PDF sets include a maximum of five active flavours Nf except for NNPDF2.1, which has Nf,max=6. Only the ABM11 PDF set employs a fixed-flavour number scheme in contrast to variable-flavour number schemes favoured by all other PDF sets. The PDF uncertainties in the cross section predictions are evaluated according to the prescriptions recommended for the respective PDFs. More details are available in the references listed in Table 2.

Table 2.

The PDF sets used in comparisons to the data together with the evolution order (Evol.), the corresponding number of active flavours, Nf, the assumed masses Mt and MZ of the top quark and the Z boson, respectively, the default values of αS(MZ), and the range in αS(MZ) variation available for fits. For CT10 the updated versions of 2012 are taken

Base set Refs. Evol.  Nf Mt (GeV) MZ (GeV) αS(MZ) αS(MZ) range
ABM11 [39] NLO 5 180 91.174 0.1180 0.110–0.130
ABM11 [39] NNLO 5 180 91.174 0.1134 0.104–0.120
CT10 [40] NLO 5 172 91.188 0.1180 0.112–0.127
CT10 [40] NNLO 5 172 91.188 0.1180 0.110–0.130
HERAPDF1.5 [41] NLO 5 180 91.187 0.1176 0.114–0.122
HERAPDF1.5 [41] NNLO 5 180 91.187 0.1176 0.114–0.122
MSTW2008 [42, 43] NLO 5 1010 91.1876 0.1202 0.110–0.130
MSTW2008 [42, 43] NNLO 5 1010 91.1876 0.1171 0.107–0.127
NNPDF2.1 [44] NLO 6 175 91.2 0.1190 0.114–0.124
NNPDF2.1 [44] NNLO 6 175 91.2 0.1190 0.114–0.124

For the NP corrections, the multijet-improved MC event generators sherpa version 1.4.3 [45] and MadGraph  5 version 1.5.12 [46] are used to simulate 3-jet events. sherpa employs a dipole formulation for parton showering [47, 48], a cluster model for hadronization [49], and an MPI model for the underlying event that is based on independent hard processes similar to pythia  [33, 45]. In the case of MadGraph, the steps of parton showering, hadronization, and multiple parton scatterings come from pythia version 6.4.26 with default settings using the Lund string model for hadronization [2931] and a multiple-interaction model for the underlying event that is interleaved with the parton shower [27]. The 3-jet mass is determined for a given event before and after the MPI and hadronization phases are performed. This allows the derivation of correction factors, which are applied to the theory prediction at NLO. The correction factor is defined as the mean of the corrections from the two examined event generators and ranges in value from 1.16 for the low mass range to about 1.05 at high 3-jet mass. The systematic uncertainty in the NP correction factors is estimated as plus or minus half of the spread between the two predictions and amounts to roughly ±2 %. The NP correction factors and their uncertainties are shown in Fig. 2 for both rapidity bins.

Fig. 2.

Fig. 2

Overview of the NP correction factors and their uncertainties in the inner |y|max<1 (solid line) and in the outer rapidity region 1|y|max<2 (dashed line)

An overview of the different theoretical uncertainties is given in Fig. 3.

Fig. 3.

Fig. 3

Overview of the theory uncertainties in the inner |y|max<1 (top) and in the outer rapidity region 1|y|max<2 (bottom) for the CT10 PDF set with NLO PDF evolution

Results and determination of the strong coupling constant

Figure 4 compares the measured 3-jet mass spectrum to the Theory prediction. This prediction is based on an NLO 3-jet calculation, which employs the CT10-NLO PDF set and is corrected for nonperturbative effects. Perturbative QCD describes the 3-jet mass cross section over five orders of magnitude for 3-jet masses up to 3 TeV. The ratios of the measured cross sections to the theory predictions are presented in Fig. 5 to better judge potential differences between data and theory. Within uncertainties, most PDF sets are able to describe the data. Some deviations are visible for small m3. Significant deviations are exhibited when using the ABM11 PDFs, which therefore are not considered in our fits of αS(MZ).

Fig. 4.

Fig. 4

Comparison of the measured 3-jet mass cross section with the theory prediction for the two regions in |y|max. This prediction is based on an NLO 3-jet calculation, which employs the CT10-NLO PDF set and is corrected for nonperturbative effects. The vertical error bars represent the total experimental uncertainty, while the horizontal error bars indicate the bin widths

Fig. 5.

Fig. 5

Ratio of the 3-jet mass cross section, divided by NP corrections, to the theory prediction at NLO with the CT10-NLO (top) or CT10-NNLO PDF set (bottom) for the inner rapidity region (left) and for the outer rapidity region (right). The data are shown with error bars representing the statistical uncertainty after unfolding added quadratically to the 1 % uncorrelated residual uncertainty and gray rectangles for the total correlated systematic uncertainty. The light gray (colour version: yellow) band indicates the PDF uncertainty for the CT10 PDF sets at 68 % confidence level. In addition, the ratios of the NLO predictions are displayed for the PDF sets MSTW2008, NNPDF2.1, HERAPDF1.5, and ABM11, also at next-to- (top) and next-to-next-to-leading evolution order (bottom)

In the following, the PDFs are considered to be an external input such that a value of αS(MZ) can be determined. Potential correlations between αS(MZ) and the PDFs are taken into account by using PDF sets that include variations in αS(MZ) as listed in Table 2. Figure 6 demonstrates for the example of the CT10-NLO PDF set the sensitivity of the theory predictions with respect to variations in the value of αS(MZ) in comparison to the data and their total uncertainty.

Fig. 6.

Fig. 6

Ratio of the measured 3-jet mass cross section in the inner rapidity region (top) and in the outer rapidity region (bottom), divided by the NP correction, with respect to the theory prediction at NLO while using the CT10-NLO PDF set with the default value of αS(MZ)=0.118. In addition, ratios are shown for the theory predictions with CT10-NLO PDFs assuming values of αS(MZ) ranging from 0.112 up to 0.127 in steps of 0.001. The error bars represent the total uncorrelated uncertainty of the data

A value of αS(MZ) is determined by minimizing the χ2 between the N measurements Di and the theoretical predictions Ti. The χ2 is defined as

χ2=ijNDi-TiCij-1Dj-Tj, 4

where the covariance matrix Cij is composed of the following terms:

C=covunf+stat+covuncor+sourcescovJES+covlumi+covPDF, 5
C=covunf+stat+covuncor+sourcescovJES+covlumi+covPDF, 6

and the terms in the sum represent

  1. covunf+stat: statistical and unfolding uncertainty including correlations induced through the unfolding;

  2. covuncor: uncorrelated systematic uncertainty summing up small residual effects such as trigger and identification inefficiencies, time dependence of the jet pT resolution, and the uncertainty on the trigger prescale factor;

  3. covJES,sources: systematic uncertainty for each JES uncertainty source;

  4. covlumi: luminosity uncertainty; and

  5. covPDF: PDF uncertainties.

The first four sources constitute the experimental uncertainty. The JES and luminosity uncertainty are treated as fully correlated across the m3 and |y|max bins, where for the JES uncertainty the procedure recommended in Ref. [12] is applied. The derivation of PDF uncertainties follows prescriptions for each individual PDF set. The CT10 and MSTW PDF sets both employ the Hessian or eigenvector method [50] with upward and downward variations for each eigenvector. As required by the use of covariance matrices, symmetric PDF uncertainties are computed following Ref. [51]. For the HERAPDF1.5 PDF set, which employs a Hessian method for the experimental uncertainties, complemented with model and parameterization uncertainties, the prescription from Ref. [41] is used. The NNPDF2.1 PDF set uses the technique of MC pseudo-experiments instead of the eigenvector method to provide PDF uncertainties. The ensemble of replicas, whose averaged predictions give the central result, are evaluated following the prescription in Ref. [52] to derive the PDF uncertainty for NNPDF. The JES and luminosity uncertainties are assumed to be multiplicative to avoid the statistical bias that arises from uncertainty estimations taken from data [5355]. The uncertainty in a result for αS(MZ) from a χ2 fit is obtained from the αS(MZ) values for which the χ2 is increased by one with respect to the minimum value.

The uncertainty in αS(MZ) due to the NP uncertainties is evaluated by looking for maximal offsets from a default fit. The theoretical prediction T is varied by the NP uncertainty ΔNP as T·NPT·NP±ΔNP. The fitting procedure is repeated for these two variations, and the deviation from the central αS(MZ) values is considered as the uncertainty in αS(MZ). Finally, the uncertainty due to the μr and μf scales is evaluated by applying the same method as for the NP corrections, varying μr and μf by the six scale factor combinations as described in Sect. 5.

The shape of the predicted 3-jet mass cross section depends on the QCD matrix elements and kinematic constraints. Because each of the leading three jets is required to have a pT larger than 100 GeV, some event configurations, possible with respect to the QCD matrix elements, are kinematically forbidden at low m3. In the spectra shown in Fig. 4, this fact is visible in the form of a maximum in the 3-jet mass cross section, which is shifted to higher m3 values for the outer compared to the inner |y|max bin because the larger differences in the jet rapidities allow higher m3 to be reached with lower pT jets. For fits of αS(MZ) the m3 region limited through kinematical constraints is unsuited, since close to the phase space boundaries fixed-order pQCD calculations might be insufficient and resummations might be required. To avoid this region of phase space as done in Ref. [11], only m3 bins beyond the maximum of the 3-jet mass cross section in the outer |y|max bin are considered. This corresponds to a minimum in m3 of 664 GeV. Including one bin more or less induces changes in the measured αS(MZ) below the percent level. To study the running of the strong coupling, the comparison between data and theory is also performed in several 3-jet mass regions above 664 GeV as shown in Table 3.

Table 3.

Determinations of αS(MZ) in the considered m3 ranges. The relevant scale in each 3-jet mass range is calculated from the cross section-weighted average as given by the theory prediction using the CT10 PDF set with NLO evolution. The three bottom rows present fits using the whole 3-jet mass range above 664 GeV in both rapidity regions either separately or combined (last row). Uncertainties are quoted separately for experimental sources, the PDFs, the NP corrections, and the scale uncertainty

m3 (GeV) Q (GeV) χ2/ndof αS(MZ) ±(exp) ±(PDF) ±(NP) ±(scale)
664794 361 4.5/3 0.1232 -0.0042+0.0040 -0.0016+0.0019 -0.0007+0.0008 -0.0044+0.0079
794938 429 7.8/3 0.1143 -0.0033+0.0034 -0.0016+0.0019 ±0.0008 -0.0042+0.0073
9381098 504 0.6/3 0.1171 -0.0034+0.0033 ±0.0022 ±0.0007 -0.0040+0.0068
10981369 602 2.6/5 0.1152 ±0.0026 -0.0026+0.0027 -0.0007+0.0008 -0.0027+0.0060
13692172 785 8.8/13 0.1168 -0.0019+0.0018 -0.0031+0.0030 -0.0006+0.0007 -0.0034+0.0068
21722602 1164 3.6/5 0.1167 -0.0044+0.0037 -0.0044+0.0040 ±0.0008 -0.0041+0.0065
26023270 1402 5.5/7 0.1120 -0.0041+0.0043 -0.0040+0.0056 ±0.0001 -0.0050+0.0088
|y|max<1 413 10.3/22 0.1163 -0.0019+0.0018 ±0.0027 ±0.0007 -0.0025+0.0059
1|y|max<2 441 10.6/22 0.1179 -0.0019+0.0018 ±0.0021 ±0.0007 -0.0037+0.0067
|y|max<2 438 47.2/45 0.1171 ±0.0013 ±0.0024 ±0.0008 -0.0040+0.0069

For the evolution of αS(Q) in the fits of αS(MZ), the Glück–Reya–Vogt formula [56] is used at 2-loop order as implemented in fastNLO. The capability of fastNLO to replace the αS(Q) evolution of a PDF set by such alternative codes is exploited to interpolate cross section predictions between the available fixed points of αS(MZ) listed in Table 2. Limited extrapolations beyond the lowest or highest values of αS(MZ) provided in a PDF series are accepted if necessary for uncertainty evaluations, up to a limit of |ΔαS(MZ)|=0.003. This extrapolation method can be necessary in some cases to fully evaluate the scale uncertainty. The procedure has been cross-checked using the original αS(Q) grid of each PDF within LHAPDF and with the evolution code of the hoppet toolkit [57] and of RunDec  [58, 59].

The CT10-NLO PDF set is chosen for the main result for two reasons: The range in available αS(MZ) values is wide enough to evaluate almost all scale uncertainties within this range and the central value of αS(MZ) in this set is rather close to the combined fit result.

The fit results for αS(MZ) and αS(Q) for all considered m3 ranges are presented in Tables 3 and 4, respectively. Fits over the total m3 range above 664 GeV are shown for each ymax bin separately and for both combined in the bottom three rows of Table 3.

Table 4.

Same as Table 3 but showing the fit result in terms of αS(Q) for each range in Q

m3 (GeV ) Q (GeV ) χ2/ndof αS(Q) ±(exp) ±(PDF) ±(NP) ±(scale)
664794 361 4.5/3 0.1013 -0.0028+0.0027 -0.0011+0.0013 ±0.0005 -0.0030+0.0052
794938 429 7.8/3 0.0933 ±0.0022 -0.0011+0.0012 ±0.0005 -0.0028+0.0048
9381098 504 0.6/3 0.0934 ±0.0021 ±0.0014 ±0.0005 -0.0025+0.0043
10981369 602 2.6/5 0.0902 ±0.0016 ±0.0016 -0.0004+0.0005 -0.0017+0.0036
13692172 785 8.8/13 0.0885 -0.0011+0.0010 -0.0018+0.0017 -0.0003+0.0004 -0.0020+0.0038
21722602 1164 3.6/5 0.0848 -0.0023+0.0019 -0.0023+0.0020 ±0.0004 -0.0021+0.0034
26023270 1402 5.5/7 0.0807 -0.0021+0.0022 -0.0021+0.0028 ±0.0001 -0.0026+0.0044

For comparison, the combined fit was also tried for alternative PDF sets listed in Table 5. For the ABM11 PDFs, which predict 3-jet mass cross sections that are too small, fits are technically possible. However, to compensate for this discrepancy, the αS(MZ) results take unreasonably high values that are far outside the αS(MZ) values that are given by the PDF authors. For the NNPDF2.1-NLO and HERAPDF1.5-NLO PDF series, a central value for αS(MZ) can be calculated, but the range in αS(MZ) values is not sufficient for a reliable determination of uncertainty estimations. In all other cases the fit results for αS(MZ) are in agreement between the investigated PDF sets and PDF evolution orders within uncertainties.

Table 5.

Determinations of αS(MZ) with different PDF sets using all 3-jet mass points with m3>664GeV. Uncertainties are quoted separately for experimental sources, the PDFs, the NP corrections, and the scale uncertainty

PDF set χ2/ndof αS(MZ) ±(exp) ±(PDF) ±(NP) ±(scale)
CT10-NLO 47.2/45 0.1171 ±0.0013 ±0.0024 ±0.0008 -0.0040+0.0069
CT10-NNLO 48.5/45 0.1165 -0.0010+0.0011 -0.0023+0.0022 -0.0008+0.0006 -0.0034+0.0066
MSTW2008-NLO 52.8/45 0.1155 -0.0013+0.0014 -0.0015+0.0014 -0.0009+0.0008 -0.0029+0.0105
MSTW2008-NNLO 53.9/45 0.1183 -0.0016+0.0011 -0.0023+0.0012 -0.0019+0.0011 -0.0050+0.0052
HERAPDF1.5-NNLO 49.9/45 0.1143 ±0.0007 -0.0035+0.0020 -0.0008+0.0003 -0.0027+0.0035
NNPDF2.1-NNLO 51.1/45 0.1164 ±0.0010 -0.0019+0.0020 -0.0009+0.0010 -0.0025+0.0058

Figure 7 shows the αS(Q) evolution determined in this analysis with CT10-NLO in comparison to the world average of αS(MZ)=0.1185±0.0006 [60]. The figure also shows an overview of the measurements of the running of the strong coupling from various other experiments [6167] together with recent determinations by CMS [11, 12, 68] and from this analysis. Within uncertainties, the new results presented here are in agreement with previous determinations and extend the covered range in scale Q up to a value of 1.4 TeV.

Fig. 7.

Fig. 7

Comparison of the αS(Q) evolution as determined in this analysis from all measurement bins with m3>664GeV (solid curve with light grey uncertainty band; colour version: red curve with yellow uncertainty band) to the world average (dashed curve with dark grey uncertainty band) [60]. The error bars on the data points correspond to the total uncertainty. In addition, an overview of measurements of the running of the strong coupling αS(Q) from electron–positron [6567], electron–proton [6972], and proton–(anti)proton collider experiments [11, 61, 62, 68] is presented. The results of this analysis extend the covered range in values of the scale Q up to 1.4 TeV

Summary

The proton–proton collision data collected by the CMS experiment in 2011 at a centre-of-mass energy of 7 TeV were used to measure the double-differential 3-jet production cross section as a function of the invariant mass m3 of the three jets leading in pT, and of their maximum rapidity ymax. The measurement covers a 3-jet mass range from 445 GeV up to 3270 GeV in two bins of rapidity up to |ymax|=2. Within experimental and theoretical uncertainties, which are of comparable size, the data are in agreement with predictions of perturbative QCD at next-to-leading order.

The strong coupling constant has been determined in multiple regions of 3-jet mass for values of the scale Q between 0.4 and 1.4 TeV from a comparison between data and theory. The results are consistent with the evolution of the strong coupling as predicted by the renormalization group equation and extend the range in Q where this could be tested up to 1.4 TeV. A combined fit of all data points above a 3-jet mass of 664 GeV gives the value of the strong coupling constant αS(MZ)=0.1171±0.0013(exp)±0.0024(PDF)±0.0008(NP)-0.0040+0.0069(scale).

This result, achieved with 3-jet production cross sections, is consistent with determinations previously reported by CMS using the inclusive jet cross section [12] and the ratio of inclusive 3-jet to inclusive 2-jet production cross sections [11]. It is also consistent with a recent determination of αS(MZ) by CMS at the top production threshold using theory at NNLO [68] and with the latest world average of αS(MZ)=0.1185±0.0006 [60].

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules / CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives / CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund.

References

  • 1.ATLAS Collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector. JHEP 05, 059 (2014). doi:10.1007/JHEP0. arXiv:1312.3524
  • 2.ATLAS Collaboration, Measurement of the inclusive jet cross section in pp collisions at s=2.76 TeV and comparison to the inclusive jet cross section at s=7 TeV using the ATLAS detector. Eur. Phys. J. C 73, 2509 (2013). doi:10.1140/epjc/s10052-013-2509-4. arXiv:1304.4739 [DOI] [PMC free article] [PubMed]
  • 3.Collaboration CMS. Measurements of differential jet cross sections in proton–proton collisions at s=7TeV with the CMS detector. Phys. Rev. D. 2012;87:112002. [Google Scholar]
  • 4.Collaboration CMS. Measurement of the inclusive jet cross section in pp collisions at s=7 TeV. Phys. Rev. Lett. 2011;107:132001. doi: 10.1103/PhysRevLett.107.132001. [DOI] [PubMed] [Google Scholar]
  • 5.Collaboration CMS. Measurement of the differential dijet production cross section in proton-proton collisions at s=7TeV. Phys. Lett. B. 2011;700:187. doi: 10.1016/j.physletb.2011.05.027. [DOI] [Google Scholar]
  • 6.ATLAS Collaboration, Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector. Eur. Phys. J. C 71, 1512 (2011). doi:10.1140/epjc/s10052-010-1512-2. arXiv:1009.5908
  • 7.D0 Collaboration Measurement of three-jet differential cross sections dσ3jet/dM3jet in pp¯ collisions at s=1.96 TeV. Phys. Lett. B. 2011;704:434. doi: 10.1016/j.physletb.2011.09.048. [DOI] [Google Scholar]
  • 8.ATLAS Collaboration, Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector. Eur. Phys. J. C (2014, submitted). arXiv:1411.1855 [DOI] [PMC free article] [PubMed]
  • 9.Nagy Z. Three-jet cross sections in hadron-hadron collisions at next-to-leading order. Phys. Rev. Lett. 2002;88:122003. doi: 10.1103/PhysRevLett.88.122003. [DOI] [PubMed] [Google Scholar]
  • 10.Nagy Z. Next-to-leading order calculation of three-jet observables in hadron–hadron collisions. Phys. Rev. D. 2003;68:094002. doi: 10.1103/PhysRevD.68.094002. [DOI] [Google Scholar]
  • 11.Collaboration CMS. Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at s=7TeV and first determination of the strong coupling constant in the TeV range. Eur. Phys. J. C. 2013;73:2604. doi: 10.1140/epjc/s10052-013-2604-6. [DOI] [Google Scholar]
  • 12.CMS Collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at s=7 TeV. Eur. Phys. J. C (2014, Submitted). arXiv:1410.6765 [DOI] [PMC free article] [PubMed]
  • 13.Cacciari M, Salam GP, Soyez G. The anti-kt jet clustering algorithm. JHEP. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 14.Cacciari M, Salam GP, Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. [DOI] [Google Scholar]
  • 15.Collaboration CMS. Measurement of the ratio of inclusive jet cross sections using the anti-kT algorithm with radius parameters R = 0.5 and 0.7 in pp collisions at s = 7 TeV. Phys. Rev. D. 2014;90:072006. doi: 10.1103/PhysRevD.90.072006. [DOI] [Google Scholar]
  • 16.CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and ETmiss. In: CMS Physics Analysis Summary CMS-PAS-PFT-09-001 (2009)
  • 17.CMS Collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector. In: CMS Physics Analysis Summary CMS-PAS-PFT-10-001 (2010)
  • 18.CMS Collaboration, Determination of the jet energy scale in CMS with pp collisions at s=7 TeV. In: CMS Physics Analysis Summary CMS-PAS-JME-10-010 (2010)
  • 19.Collaboration CMS. Determination of jet energy calibration and transverse momentum resolution in CMS. J. Instrum. 2011;6:P11002. doi: 10.1088/1748-0221/6/11/P11002. [DOI] [Google Scholar]
  • 20.Collaboration CMS. The CMS experiment at the CERN LHC. JINST. 2008;03:S08004. [Google Scholar]
  • 21.CMS Collaboration, Tracking and primary vertex results in first 7 TeV collisions. In: CMS Physics Analysis Summary CMS-PAS-TRK-10-005 (2010)
  • 22.CMS Collaboration, Calorimeter jet quality criteria for the first CMS collision data. In: CMS Physics Analysis Summary CMS-PAS-JME-09-008 (2010)
  • 23.D’Agostini G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Meth. A. 1995;362:487. doi: 10.1016/0168-9002(95)00274-X. [DOI] [Google Scholar]
  • 24.T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). doi:10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175
  • 25.R. Field, Early LHC underlying event data-findings and surprises. In: 21st Hadron Collider Physics Symposium (HCP 2010). Toronto, Ontario, Canada, August 23–27 (2010). arXiv:1010.3558
  • 26.Bähr M, et al. Herwig++ physics and manual. Eur. Phys. J. C. 2008;58:639. doi: 10.1140/epjc/s10052-008-0798-9. [DOI] [Google Scholar]
  • 27.Sjöstrand T, Skands PZ. Transverse-momentum-ordered showers and interleaved multiple interactions. Eur. Phys. J. C. 2005;39:129. doi: 10.1140/epjc/s2004-02084-y. [DOI] [Google Scholar]
  • 28.Gieseke S, Stephens P, Webber B. New formalism for QCD parton showers. JHEP. 2003;12:045. doi: 10.1088/1126-6708/2003/12/045. [DOI] [Google Scholar]
  • 29.Andersson B, Gustafson G, Ingelman G, Sjöstrand T. Parton fragmentation and string dynamics. Phys. Rept. 1983;97:31. doi: 10.1016/0370-1573(83)90080-7. [DOI] [Google Scholar]
  • 30.Andersson B, Gustafson G, Söderberg B. A general model for jet fragmentation. Z. Phys. C. 1983;20:317. doi: 10.1007/BF01407824. [DOI] [Google Scholar]
  • 31.Sjöstrand T. The merging of jets. Phys. Lett. B. 1984;142:420. doi: 10.1016/0370-2693(84)91354-6. [DOI] [Google Scholar]
  • 32.Webber BR. A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B. 1984;238:492. doi: 10.1016/0550-3213(84)90333-X. [DOI] [Google Scholar]
  • 33.Sjöstrand T, van Zijl M. A multiple-interaction model for the event structure in hadron collisions. Phys. Rev. D. 1987;36:2019. doi: 10.1103/PhysRevD.36.2019. [DOI] [PubMed] [Google Scholar]
  • 34.Bähr M, Gieseke S, Seymour MH. Simulation of multiple partonic interactions in Herwig++ JHEP. 2008;07:076. doi: 10.1088/1126-6708/2008/07/076. [DOI] [Google Scholar]
  • 35.CMS Collaboration, Absolute calibration of the luminosity measurement at CMS: Winter 2012 update. In: CMS Physics Analysis Summary CMS-PAS-SMP-12-008 (2012)
  • 36.Dittmaier S, Huss A, Speckner C. Weak radiative corrections to dijet production at hadron colliders. JHEP. 2012;11:095. doi: 10.1007/JHEP11(2012)095. [DOI] [Google Scholar]
  • 37.D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, New features in version 2 of the fastNLO project. In: 20th International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2012), p. 217. Bonn, Germany, March 26–30 (2012). arXiv:1208.3641. doi:10.3204/DESY-PROC-2012-02/165
  • 38.M.R. Whalley, D. Bourilkov, R.C. Group, The Les Houches Accord PDFs (LHAPDF) and LHAGLUE (2005). arXiv:hep-ph/0508110
  • 39.Alekhin S, Blümlein J, Moch S. Parton distribution functions and benchmark cross sections at next-to-next-to-leading order. Phys. Rev. D. 2012;86:054009. doi: 10.1103/PhysRevD.86.054009. [DOI] [Google Scholar]
  • 40.Lai H-L, et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 41.H1 and ZEUS Collaboration Combined measurement and QCD analysis of the inclusive e±p scattering cross sections at HERA. JHEP. 2010;01:109. [Google Scholar]
  • 42.Martin AD, Stirling WJ, Thorne RS, Watt G. Parton distributions for the LHC. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. [DOI] [Google Scholar]
  • 43.Martin AD, Stirling WJ, Thorne RS, Watt G. Uncertainties on αS in global PDF analyses and implications for predicted hadronic cross sections. Eur. Phys. J. C. 2009;64:653. doi: 10.1140/epjc/s10052-009-1164-2. [DOI] [Google Scholar]
  • 44.NNPDF Collaboration, Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). doi:10.1016/j.nuclphysb.2011.03.021. arXiv:1101.1300
  • 45.T. Gleisberg et al., Event generation with SHERPA 1.1. JHEP 02, 007 (2009). doi:10.1088/1126-6708/2009/02/007. arXiv:0811.4622
  • 46.Alwall J, et al. MadGraph 5: going beyond. JHEP. 2011;06:128. doi: 10.1007/JHEP06(2011)128. [DOI] [Google Scholar]
  • 47.Winter J-C, Krauss F. Initial-state showering based on colour dipoles connected to incoming parton lines. JHEP. 2008;07:040. doi: 10.1088/1126-6708/2008/07/040. [DOI] [Google Scholar]
  • 48.Schumann S, Krauss F. A parton shower algorithm based on Catani–Seymour dipole factorisation. JHEP. 2008;03:038. doi: 10.1088/1126-6708/2008/03/038. [DOI] [Google Scholar]
  • 49.Winter J-C, Krauss F, Soff G. A modified cluster hadronization model. Eur. Phys. J. C. 2004;36:381. doi: 10.1140/epjc/s2004-01960-8. [DOI] [Google Scholar]
  • 50.Pumplin J, et al. Uncertainties of predictions from parton distribution functions II: the Hessian method. Phys. Rev. D. 2001;65:014013. doi: 10.1103/PhysRevD.65.014013. [DOI] [Google Scholar]
  • 51.Pumplin J, et al. New generation of parton distributions with uncertainties from global QCD analysis. JHEP. 2002;07:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 52.NNPDF Collaboration, A first unbiased global NLO determination of parton distributions and their uncertainties. Nucl. Phys. B 838, 136 (2010). doi:10.1016/j.nuclphysb.2010.05.008. arXiv:1002.4407
  • 53.Lyons L, Martin AJ, Saxon DH. On the determination of the B lifetime by combining the results of different experiments. Phys. Rev. D. 1990;41:982. doi: 10.1103/PhysRevD.41.982. [DOI] [PubMed] [Google Scholar]
  • 54.D’Agostini G. Bayesian reasoning in data analysis: a critical introduction. Singapore: World Scientific; 2003. [Google Scholar]
  • 55.NNPDF Collaboration, Fitting parton distribution data with multiplicative normalization uncertainties. JHEP 05, 075 (2010). doi:10.1007/JHEP05(2010)%20075. arXiv:0912.2276
  • 56.Glück M, Reya E, Vogt A. Dynamical parton distributions revisited. Eur. Phys. J. C. 1998;5:461. doi: 10.1007/s100529800978. [DOI] [Google Scholar]
  • 57.Salam GP, Rojo J. A higher order perturbative parton evolution toolkit (HOPPET) Comput. Phys. Commun. 2009;180:120. doi: 10.1016/j.cpc.2008.08.010. [DOI] [Google Scholar]
  • 58.Schmidt B, Steinhauser M. CRunDec: a C++ package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun. 2012;183:1845. doi: 10.1016/j.cpc.2012.03.023. [DOI] [Google Scholar]
  • 59.Chetyrkin KG, Kuhn JH, Steinhauser M. RunDec: a mathematica package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun. 2000;133:43. doi: 10.1016/S0010-4655(00)00155-7. [DOI] [Google Scholar]
  • 60.Particle Data Group, K.A. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014). doi:10.1088/1674-1137/38/9/090001
  • 61.D0 Collaboration Determination of the strong coupling constant from the inclusive jet cross section in pp¯ collisions at s=1.96 TeV. Phys. Rev. D. 2009;80:111107. doi: 10.1103/PhysRevD.80.111107. [DOI] [Google Scholar]
  • 62.D0 Collaboration Measurement of angular correlations of jets at s=1.96 TeV and determination of the strong coupling at high momentum transfers. Phys. Lett. B. 2012;718:56. doi: 10.1016/j.physletb.2012.10.003. [DOI] [Google Scholar]
  • 63.Collaboration ZEUS. Jet-radius dependence of inclusive-jet cross-sections in deep inelastic scattering at HERA. Phys. Lett. B. 2007;649:12. doi: 10.1016/j.physletb.2007.03.039. [DOI] [Google Scholar]
  • 64.H1 Collaboration Deep inelastic inclusive ep scattering at low x and a determination of αS. Eur. Phys. J. C. 2001;21:33. doi: 10.1007/s100520100720. [DOI] [Google Scholar]
  • 65.Collaboration JADE. Measurement of the strong coupling αS from the four-jet rate in e+e- annihilation using JADE data. Eur. Phys. J. C. 2006;48:3. doi: 10.1140/epjc/s2006-02625-4. [DOI] [Google Scholar]
  • 66.DELPHI Collaboration, The measurement of αS from event shapes with the DELPHI detector at the highest LEP energies. Eur. Phys. J. C 37, 1 (2004). doi:10.1140/epjc/s2004-01889-x. arXiv:hep-ex/0406011
  • 67.S. Martí i García, Review of αs measurements at LEP 2 (1997). arXiv:hep-ex/9704016
  • 68.Collaboration CMS. Determination of the top-quark pole mass and strong coupling constant from the tt¯ production cross section in pp collisions at s = 7 TeV. Phys. Lett. B. 2014;728:496. doi: 10.1016/j.physletb.2013.12.009. [DOI] [Google Scholar]
  • 69.H1 Collaboration Jet production in ep collisions at high Q2 and determination of αs. Eur. Phys. J. C. 2010;65:363. doi: 10.1140/epjc/s10052-009-1208-7. [DOI] [Google Scholar]
  • 70.H1 Collaboration, Jet production in ep collisions at low Q2 and determination of αs. Eur. Phys. J. C 67, 1 (2010). doi:10.1140/epjc/s10052-010-1282-x. arXiv:0911.5678
  • 71.Collaboration ZEUS. Inclusive-jet photoproduction at HERA and determination of αS. Nucl. Phys. B. 2012;864:1. doi: 10.1016/j.nuclphysb.2012.06.006. [DOI] [Google Scholar]
  • 72.H1 Collaboration, Measurement of multijet production in EP collisions at high Q2 and determination of the strong coupling αs. Eur. Phys. J. C (2014). arXiv:1406.4709

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES