Abstract
Angiotensin II (AII) in adrenal glomerulosa cells activates phospholipase C resulting in the formation of inositol phosphates and diacylglycerol rich in arachidonic acid (AA). Although glomerulosa cells can metabolize AA via cyclooxygenase (CO), this pathway plays little role in aldosterone synthesis. Recent evidence suggests that the lipoxygenase (LO) pathway may be important for hormonal secretion in endocrine tissues such as the islet of Langerhans. However, the capacity of the glomerulosa cell to synthesize LO products and their role in aldosterone secretion is not known. To study this, the effect of nonselective and selective LO inhibitors on AII, ACTH, and potassium-induced aldosterone secretion and LO product formation was evaluated in isolated rat glomerulosa cells. BW755c, a nonselective LO inhibitor dose dependently reduced the AII-stimulated level of aldosterone without altering AII binding (91 +/- 6 to 36 +/- 4 ng/10(6) cells/h 10(-4) M, P less than 0.001). The same effect was observed with another nonselective LO blocker, phenidone, and a more selective 12-LO inhibitor, Baicalein. In contrast U-60257, a selective 5-LO inhibitor did not change the AII-stimulated levels of aldosterone (208 +/- 11% control, AII 10(-9) M vs. 222 +/- 38%, AII + U-60257). The LO blockers action was specific for AII since neither BW755c nor phenidone altered ACTH or K+-induced aldosterone secretion. AII stimulated the formation of the 12-LO product 12-hydroxyeicosatetraenoic acid (12-HETE) as measured by ultraviolet detection and HPLC in AA loaded cells and by a specific RIA in unlabeled cells (501 +/- 50 to 990 +/- 10 pg/10(5) cells, P less than 0.02). BW755c prevented the AII-mediated rise in 12-HETE formation. In contrast, neither ACTH nor K+ increased 12-HETE levels. The addition of 12-HETE or its unstable precursor 12-HPETE (10(-9) or 10(-8) M) completely restored AII action during LO blockade. AII also produced an increase in 15-HETE formation, but the 15-LO products had no effect on aldosterone secretion. These studies suggest that the 12-LO pathway plays a key role as a new specific mediator of AII-induced aldosterone secretion.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abou-Samra A. B., Catt K. J., Aguilera G. Role of arachidonic acid in the regulation of adrenocorticotropin release from rat anterior pituitary cell cultures. Endocrinology. 1986 Oct;119(4):1427–1431. doi: 10.1210/endo-119-4-1427. [DOI] [PubMed] [Google Scholar]
- Beetens J. R., Loots W., Somers Y., Coene M. C., De Clerck F. Ketoconazole inhibits the biosynthesis of leukotrienes in vitro and in vivo. Biochem Pharmacol. 1986 Mar 15;35(6):883–891. doi: 10.1016/0006-2952(86)90072-9. [DOI] [PubMed] [Google Scholar]
- Braley L. M., Menachery A. I., Brown E. M., Williams G. H. Comparative effect of angiotensin II, potassium, adrenocorticotropin, and cyclic adenosine 3',5'-monophosphate on cytosolic calcium in rat adrenal cells. Endocrinology. 1986 Sep;119(3):1010–1019. doi: 10.1210/endo-119-3-1010. [DOI] [PubMed] [Google Scholar]
- Campbell W. B., Brady M. T., Gomez-Sanchez C. E. Effects of angiotensin, prostaglandin E2 and indomethacin on the early and late steps of aldosterone biosynthesis in isolated adrenal cells. J Steroid Biochem. 1986 Apr;24(4):865–870. doi: 10.1016/0022-4731(86)90447-4. [DOI] [PubMed] [Google Scholar]
- Campbell W. B., Gomez-Sanchez C. E. Absence of prostacyclin involvement in angiotensin-induced aldosterone secretion in rat adrenal cells. Endocrinology. 1985 Jul;117(1):279–286. doi: 10.1210/endo-117-1-279. [DOI] [PubMed] [Google Scholar]
- Campbell W. B., Gomez-Sanchez C. E., Adams B. V. Role of prostaglandins in angiotensin-induced steriodogenesis absence of an effect by prostaglandin E2. Hypertension. 1980 Jul-Aug;2(4):471–476. doi: 10.1161/01.hyp.2.4.471. [DOI] [PubMed] [Google Scholar]
- Campbell W. B., Gomez-Sanchez C. E., Adams B. V., Schmitz J. M., Itskovitz H. D. Attenuation of angiotensin II- and III-induced aldosterone release by prostaglandin synthesis inhibitors. J Clin Invest. 1979 Dec;64(6):1552–1557. doi: 10.1172/JCI109615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capdevila J., Marnett L. J., Chacos N., Prough R. A., Estabrook R. W. Cytochrome P-450-dependent oxygenation of arachidonic acid to hydroxyicosatetraenoic acids. Proc Natl Acad Sci U S A. 1982 Feb;79(3):767–770. doi: 10.1073/pnas.79.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark D. L., Linden J. Modulation of guanylate cyclase by lipoxygenase inhibitors. Hypertension. 1986 Oct;8(10):947–950. doi: 10.1161/01.hyp.8.10.947. [DOI] [PubMed] [Google Scholar]
- Dix C. J., Habberfield A. D., Sullivan M. H., Cooke B. A. Inhibition of steroid production in Leydig cells by non-steroidal anti-inflammatory and related compounds: evidence for the involvement of lipoxygenase products in steroidogenesis. Biochem J. 1984 Apr 15;219(2):529–537. doi: 10.1042/bj2190529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas J., Aguilera G., Kondo T., Catt K. Angiotensin II receptors and aldosterone production in rat adrenal glomerulosa cells. Endocrinology. 1978 Mar;102(3):685–696. doi: 10.1210/endo-102-3-685. [DOI] [PubMed] [Google Scholar]
- Elliott M. E., Alexander R. C., Goodfriend T. L. Aspects of angiotensin action in the adrenal. Key roles for calcium and phosphatidyl inositol. Hypertension. 1982 May-Jun;4(3 Pt 2):52–58. [PubMed] [Google Scholar]
- Fakunding J. L., Chow R., Catt K. J. The role of calcium in the stimulation of aldosterone production by adrenocorticotropin, angiotensin II, and potassium in isolated glomerulosa cells. Endocrinology. 1979 Aug;105(2):327–333. doi: 10.1210/endo-105-2-327. [DOI] [PubMed] [Google Scholar]
- Farese R. V., Larson R. E., Sabir M. A., Gomez-Sanchez C. Effects of angiotensin-II and potassium on phospholipid metabolism in the adrenal zona glomerulosa. J Biol Chem. 1981 Nov 10;256(21):11093–11097. [PubMed] [Google Scholar]
- Ferreri N. R., Schwartzman M., Ibraham N. G., Chander P. N., McGiff J. C. Arachidonic acid metabolism in a cell suspension isolated from rabbit renal outer medulla. J Pharmacol Exp Ther. 1984 Nov;231(2):441–448. [PubMed] [Google Scholar]
- Frölich J. C., Hollifield J. W., Dormois J. C., Frölich B. L., Seyberth H., Michelakis A. M., Oates J. A. Suppression of plasma renin activity by indomethacin in man. Circ Res. 1976 Sep;39(3):447–452. doi: 10.1161/01.res.39.3.447. [DOI] [PubMed] [Google Scholar]
- Griendling K. K., Rittenhouse S. E., Brock T. A., Ekstein L. S., Gimbrone M. A., Jr, Alexander R. W. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem. 1986 May 5;261(13):5901–5906. [PubMed] [Google Scholar]
- Hageman W. E., Rose M. P., Persico F. J. Antagonism by ETYA of the effects of leukotrienes on ileum and lung parenchymal strips independent of effects on arachidonic acid metabolism. Prostaglandins. 1986 Oct;32(4):563–578. doi: 10.1016/0090-6980(86)90038-9. [DOI] [PubMed] [Google Scholar]
- Haning R., Tait S. A., Tait J. F. In vitro effects of ACTH, angiotensins, serotonin and potassium on steroid output and conversion of corticosterone to aldosterone by isolated adrenal cells. Endocrinology. 1970 Dec;87(6):1147–1167. doi: 10.1210/endo-87-6-1147. [DOI] [PubMed] [Google Scholar]
- Hansson A., Serhan C. N., Haeggström J., Ingelman-Sundberg M., Samuelsson B. Activation of protein kinase C by lipoxin A and other eicosanoids. Intracellular action of oxygenation products of arachidonic acid. Biochem Biophys Res Commun. 1986 Feb 13;134(3):1215–1222. doi: 10.1016/0006-291x(86)90380-3. [DOI] [PubMed] [Google Scholar]
- Hirai A., Tahara K., Tamura Y., Saito H., Terano T., Yoshida S. Involvement of 5-lipoxygenase metabolites in ACTH-stimulated corticosteroidogenesis in rat adrenal glands. Prostaglandins. 1985 Nov;30(5):749–767. doi: 10.1016/0090-6980(85)90005-x. [DOI] [PubMed] [Google Scholar]
- Horton R. Stimulation and suppression of aldosterone in plasma of normal man and in primary aldosteronism. J Clin Invest. 1969 Jul;48(7):1230–1236. doi: 10.1172/JCI106087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunyady L., Balla T., Enyedi P., Spät A. The effect of angiotensin II on arachidonate metabolism in adrenal glomerulosa cells. Biochem Pharmacol. 1985 Oct 1;34(19):3439–3444. doi: 10.1016/0006-2952(85)90715-4. [DOI] [PubMed] [Google Scholar]
- KAPLAN N. M., BARTER F. C. The effect of ACTH, renin, angiotensin II, and various precursors on biosynthesis of aldosterone by adrenal slices. J Clin Invest. 1962 Apr;41:715–724. doi: 10.1172/JCI104530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kojima I., Kojima K., Kreutter D., Rasmussen H. The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways. J Biol Chem. 1984 Dec 10;259(23):14448–14457. [PubMed] [Google Scholar]
- Kojima I., Kojima K., Rasmussen H. Possible role of phospholipase A2 action and arachidonic acid metabolism in angiotensin II-mediated aldosterone secretion. Endocrinology. 1985 Sep;117(3):1057–1066. doi: 10.1210/endo-117-3-1057. [DOI] [PubMed] [Google Scholar]
- Levine L., Alam I., Gjika H., Carty T. J., Goetzl E. J. The development of a radioimmunoassay for 12-L-hydroxyeicosatetraenoic acid. Prostaglandins. 1980 Nov;20(5):923–934. doi: 10.1016/0090-6980(80)90142-2. [DOI] [PubMed] [Google Scholar]
- Matsuoka H., Tan S. Y., Mulrow P. J. Effects of prostaglandins on adrenal steroidogenesis in the rat. Prostaglandins. 1980 Feb;19(2):291–298. doi: 10.1016/0090-6980(80)90027-1. [DOI] [PubMed] [Google Scholar]
- Mayes D., Furuyama S., Kem D. C., Nugent C. A. A radioimmunoassay for plasma aldosterone. J Clin Endocrinol Metab. 1970 May;30(5):682–685. doi: 10.1210/jcem-30-5-682. [DOI] [PubMed] [Google Scholar]
- Metz S. A., Draznin B., Sussman K. E., Leitner J. W. Unmasking of arachidonate-induced insulin release by removal of extracellular calcium. Arachidonic acid mobilizes cellular calcium in rat islets of Langerhans. Biochem Biophys Res Commun. 1987 Jan 15;142(1):251–258. doi: 10.1016/0006-291x(87)90478-5. [DOI] [PubMed] [Google Scholar]
- Metz S. A. Glucose increases the synthesis of lipoxygenase-mediated metabolites of arachidonic acid in intact rat islets. Proc Natl Acad Sci U S A. 1985 Jan;82(1):198–202. doi: 10.1073/pnas.82.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metz S., VanRollins M., Strife R., Fujimoto W., Robertson R. P. Lipoxygenase pathway in islet endocrine cells. Oxidative metabolism of arachidonic acid promotes insulin release. J Clin Invest. 1983 May;71(5):1191–1205. doi: 10.1172/JCI110868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. T., Douglas J. G., Dunn M. J. Dissociation of aldosterone and prostaglandin biosynthesis in the rat adrenal glomerulosa. Prostaglandins. 1980 Sep;20(3):449–462. doi: 10.1016/0090-6980(80)90032-5. [DOI] [PubMed] [Google Scholar]
- Nakao J., Ito H., Ooyama T., Chang W. C., Murota S. Calcium dependency of aortic smooth muscle cell migration induced by 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid. Effects of A23187, nicardipine and trifluoperazine. Atherosclerosis. 1983 Mar;46(3):309–319. doi: 10.1016/0021-9150(83)90180-6. [DOI] [PubMed] [Google Scholar]
- Naor Z., Kiesel L., Vanderhoek J. Y., Catt K. J. Mechanism of action of gonadotropin releasing hormone: role of lipoxygenase products of arachidonic acid in luteinizing hormone release. J Steroid Biochem. 1985 Nov;23(5B):711–717. doi: 10.1016/s0022-4731(85)80006-6. [DOI] [PubMed] [Google Scholar]
- Oliw E. H., Lawson J. A., Brash A. R., Oates J. A. Arachidonic acid metabolism in rabbit renal cortex. Formation of two novel dihydroxyeicosatrienoic acids. J Biol Chem. 1981 Oct 10;256(19):9924–9931. [PubMed] [Google Scholar]
- Peters S. P., Schulman E. S., Liu M. C., Hayes E. C., Lichtenstein L. M. Separation of major prostaglandins, leukotrienes, and monoHETEs by high performance liquid chromatography. J Immunol Methods. 1983 Nov 25;64(3):335–343. doi: 10.1016/0022-1759(83)90441-6. [DOI] [PubMed] [Google Scholar]
- Powell W. S. Rapid extraction of arachidonic acid metabolites from biological samples using octadecylsilyl silica. Methods Enzymol. 1982;86:467–477. doi: 10.1016/0076-6879(82)86218-6. [DOI] [PubMed] [Google Scholar]
- Sekiya K., Okuda H. Selective inhibition of platelet lipoxygenase by baicalein. Biochem Biophys Res Commun. 1982 Apr 14;105(3):1090–1095. doi: 10.1016/0006-291x(82)91081-6. [DOI] [PubMed] [Google Scholar]
- Snyder G. D., Capdevila J., Chacos N., Manna S., Falck J. R. Action of luteinizing hormone-releasing hormone: involvement of novel arachidonic acid metabolites. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3504–3507. doi: 10.1073/pnas.80.11.3504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun F. F., McGuire J. C. Inhibition of human neutrophil arachidonate 5-lipoxygenase by 6,9-deepoxy-6,9-(phenylimino)-delta 6,8-prostaglandin I1 (U-60257). Prostaglandins. 1983 Aug;26(2):211–221. doi: 10.1016/0090-6980(83)90090-4. [DOI] [PubMed] [Google Scholar]
- Swartz S. L., Williams G. H. Role of prostaglandins in adrenal steroidogenesis. Endocrinology. 1983 Sep;113(3):992–996. doi: 10.1210/endo-113-3-992. [DOI] [PubMed] [Google Scholar]
- Turk J., Colca J. R., McDaniel M. L. Arachidonic acid metabolism in isolated pancreatic islets. III. Effects of exogenous lipoxygenase products and inhibitors on insulin secretion. Biochim Biophys Acta. 1985 Mar 27;834(1):23–36. doi: 10.1016/0005-2760(85)90172-9. [DOI] [PubMed] [Google Scholar]