Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Dec;80(6):1808–1811. doi: 10.1172/JCI113276

Restoration of endothelium-dependent relaxation by dietary treatment of atherosclerosis.

D G Harrison 1, M L Armstrong 1, P C Freiman 1, D D Heistad 1
PMCID: PMC442458  PMID: 3680531

Abstract

Atherosclerosis results in impaired relaxation to acetylcholine, thrombin, and the calcium ionophore A23187, all agents that require the presence of endothelium. We now report that dietary treatment of atherosclerosis in monkeys not only produces morphological improvement of the atherosclerotic lesion but restores endothelium-dependent vascular relaxation to normal. Because the intima remains thickened after regression of atherosclerosis, these studies suggest that intimal thickening which is present in both atherosclerotic vessels and after regression of atherosclerosis does not prevent the endothelium-derived relaxing factor from reaching the underlying vascular smooth muscle.

Full text

PDF
1808

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong M. L., Heistad D. D., Marcus M. L., Piegors D. J., Abboud F. M. Hemodynamic sequelae of regression of experimental atherosclerosis. J Clin Invest. 1983 Jan;71(1):104–113. doi: 10.1172/JCI110738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong M. L., Megan M. B. Lipid depletion in atheromatous coronary arteries in rhesus monkeys after regression diets. Circ Res. 1972 Jun;30(6):675–680. doi: 10.1161/01.res.30.6.675. [DOI] [PubMed] [Google Scholar]
  3. Armstrong M. L., Warner E. D., Connor W. E. Regression of coronary atheromatosis in rhesus monkeys. Circ Res. 1970 Jul;27(1):59–67. doi: 10.1161/01.res.27.1.59. [DOI] [PubMed] [Google Scholar]
  4. Chappell S. P., Lewis M. J., Henderson A. H. Effect of lipid feeding on endothelium dependent relaxation in rabbit aortic preparations. Cardiovasc Res. 1987 Jan;21(1):34–38. doi: 10.1093/cvr/21.1.34. [DOI] [PubMed] [Google Scholar]
  5. FRIEDMAN M., BYERS S. O. OBSERVATIONS CONCERNING THE EVOLUTION OF ATHEROSCLEROSIS IN THE RABBIT AFTER CESSATION OF CHOLESTEROL FEEDING. Am J Pathol. 1963 Sep;43:349–359. [PMC free article] [PubMed] [Google Scholar]
  6. Freiman P. C., Mitchell G. G., Heistad D. D., Armstrong M. L., Harrison D. G. Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res. 1986 Jun;58(6):783–789. doi: 10.1161/01.res.58.6.783. [DOI] [PubMed] [Google Scholar]
  7. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  8. Glueck C. J. Role of risk factor management in progression and regression of coronary and femoral artery atherosclerosis. Am J Cardiol. 1986 May 30;57(14):35G–41G. doi: 10.1016/0002-9149(86)90664-8. [DOI] [PubMed] [Google Scholar]
  9. Habib J. B., Bossaller C., Wells S., Williams C., Morrisett J. D., Henry P. D. Preservation of endothelium-dependent vascular relaxation in cholesterol-fed rabbit by treatment with the calcium blocker PN 200110. Circ Res. 1986 Feb;58(2):305–309. doi: 10.1161/01.res.58.2.305. [DOI] [PubMed] [Google Scholar]
  10. Heistad D. D., Armstrong M. L., Marcus M. L., Piegors D. J., Mark A. L. Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ Res. 1984 Jun;54(6):711–718. doi: 10.1161/01.res.54.6.711. [DOI] [PubMed] [Google Scholar]
  11. Henry P. D., Yokoyama M. Supersensitivity of atherosclerotic rabbit aorta to ergonovine. Mediation by a serotonergic mechanism. J Clin Invest. 1980 Aug;66(2):306–313. doi: 10.1172/JCI109858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jayakody R. L., Senaratne M. P., Thomson A. B., Kappagoda C. T. Cholesterol feeding impairs endothelium-dependent relaxation of rabbit aorta. Can J Physiol Pharmacol. 1985 Sep;63(9):1206–1209. doi: 10.1139/y85-199. [DOI] [PubMed] [Google Scholar]
  13. Kawachi Y., Tomoike H., Maruoka Y., Kikuchi Y., Araki H., Ishii Y., Tanaka K., Nakamura M. Selective hypercontraction caused by ergonovine in the canine coronary artery under conditions of induced atherosclerosis. Circulation. 1984 Feb;69(2):441–450. doi: 10.1161/01.cir.69.2.441. [DOI] [PubMed] [Google Scholar]
  14. Maseri A., L'Abbate A., Baroldi G., Chierchia S., Marzilli M., Ballestra A. M., Severi S., Parodi O., Biagini A., Distante A. Coronary vasospasm as a possible cause of myocardial infarction. A conclusion derived from the study of "preinfarction" angina. N Engl J Med. 1978 Dec 7;299(23):1271–1277. doi: 10.1056/NEJM197812072992303. [DOI] [PubMed] [Google Scholar]
  15. Rapoport R. M., Murad F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res. 1983 Mar;52(3):352–357. doi: 10.1161/01.res.52.3.352. [DOI] [PubMed] [Google Scholar]
  16. Rubanyi G. M., Vanhoutte P. M. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol. 1986 May;250(5 Pt 2):H822–H827. doi: 10.1152/ajpheart.1986.250.5.H822. [DOI] [PubMed] [Google Scholar]
  17. Waters D. D., Bouchard A., Théroux P. Spontaneous remission is a frequent outcome of variant angina. J Am Coll Cardiol. 1983 Aug;2(2):195–199. doi: 10.1016/s0735-1097(83)80153-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES