Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Mar;81(3):813–817. doi: 10.1172/JCI113388

Defect in biosynthesis of mitochondrial acetoacetyl-coenzyme A thiolase in cultured fibroblasts from a boy with 3-ketothiolase deficiency.

S Yamaguchi 1, T Orii 1, N Sakura 1, S Miyazawa 1, T Hashimoto 1
PMCID: PMC442530  PMID: 2893809

Abstract

The etiology of 3-ketothiolase deficiency has been attributed to a defect of mitochondrial acetoacetyl-CoA thiolase because the acetoacetyl-CoA thiolase activity in related materials is not activated by K+, a property characteristic for this enzyme. We studied the enzyme protein and the biosynthesis of mitochondrial acetoacetyl-CoA thiolase, using cultured skin fibroblasts from a 5-yr-old boy with 3-ketothiolase deficiency. The following results were obtained. (a) Activation of acetoacetyl-CoA thiolase activity by K+ was nil; (b) The enzyme activity was not affected by treatment with the antibody against mitochondrial acetoacetyl-CoA thiolase; (c) A signal for mitochondrial acetoacetyl-CoA thiolase protein was not detected in the immunoblot analysis; and (d) Pulse-chase experiments of skin fibroblasts, using [35S]methionine, revealed no incorporation of radioactivity into this enzyme. Therefore, fibroblasts from this patient lacked mitochondrial acetoacetyl-CoA thiolase protein due to a defect in its biosynthesis.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. J., Littlewood J. M., MacDonald A., Pollitt R. J., Thompson J. A case of beta-ketothiolase deficiency. J Inherit Metab Dis. 1983;6(4):157–157. doi: 10.1007/BF02310871. [DOI] [PubMed] [Google Scholar]
  2. Daum R. S., Lamm P. H., Mamer O. A., Scriver C. R. A "new" disorder of isoleucine catabolism. Lancet. 1971 Dec 11;2(7737):1289–1290. doi: 10.1016/s0140-6736(71)90605-2. [DOI] [PubMed] [Google Scholar]
  3. Daum R. S., Scriver C. R., Mamer O. A., Delvin E., Lamm P., Goldman H. An inherited disorder of isoleucine catabolism causing accumulation of alpha-methylacetoacetate and alpha-methyl-beta -hydroxybutyrate, and intermittent metabolic acidosis. Pediatr Res. 1973 Mar;7(3):149–160. doi: 10.1203/00006450-197303000-00007. [DOI] [PubMed] [Google Scholar]
  4. Gompertz D., Saudubray J. M., Charpentier C., Bartlett K., Goodey P. A., Draffan G. H. A defect in l-isoleucine metabolism associated with alpha-methyl-beta-hydroxybutyric and alpha-methylacetoacetic aciduria: quantitative in vivo and in vitro studies. Clin Chim Acta. 1974 Dec 17;57(3):269–281. doi: 10.1016/0009-8981(74)90407-0. [DOI] [PubMed] [Google Scholar]
  5. Halvorsen S., Stokke O., Jellum E. A variant form of 2-methyl-3-hydroxybutyric and 2-methylacetoacetic aciduria. Acta Paediatr Scand. 1979 Jan;68(1):123–128. doi: 10.1111/j.1651-2227.1979.tb04972.x. [DOI] [PubMed] [Google Scholar]
  6. Hillman R. E., Keating J. P. Beta-ketothiolase deficiency as a cause of the "ketotic hyperglycinemia syndrome". Pediatrics. 1974 Feb;53(2):221–225. [PubMed] [Google Scholar]
  7. Hiyama K., Sakura N., Matsumoto T., Kuhara T. Deficient beta-ketothiolase activity in leukocytes from a patient with 2-methylacetoacetic aciduria. Clin Chim Acta. 1986 Mar 16;155(2):189–194. doi: 10.1016/0009-8981(86)90283-4. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  11. Middleton B., Bartlett K., Romanos A., Gomez Vazquez J., Conde C., Cannon R. A., Lipson M., Sweetman L., Nyhan W. L. 3-Ketothiolase deficiency. Eur J Pediatr. 1986 Apr;144(6):586–589. doi: 10.1007/BF00496042. [DOI] [PubMed] [Google Scholar]
  12. Middleton B., Bartlett K. The synthesis and characterisation of 2-methylacetoacetyl coenzyme A and its use in the identification of the site of the defect in 2-methylacetoacetic and 2-methyl-3-hydroxybutyric aciduria. Clin Chim Acta. 1983 Mar 14;128(2-3):291–305. doi: 10.1016/0009-8981(83)90329-7. [DOI] [PubMed] [Google Scholar]
  13. Middleton B., Gray R. G., Bennett M. J. Two cases of beta-ketothiolase deficiency: a comparison. J Inherit Metab Dis. 1984;7 (Suppl 2):131–132. [PubMed] [Google Scholar]
  14. Middleton B. The kinetic mechanism and properties of the cytoplasmic acetoacetyl-coenzyme A thiolase from rat liver. Biochem J. 1974 Apr;139(1):109–121. doi: 10.1042/bj1390109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Middleton B. The oxoacyl-coenzyme A thiolases of animal tissues. Biochem J. 1973 Apr;132(4):717–730. doi: 10.1042/bj1320717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miura S., Mori M., Takiguchi M., Tatibana M., Furuta S., Miyazawa S., Hashimoto T. Biosynthesis and intracellular transport of enzymes of peroxisomal beta-oxidation. J Biol Chem. 1984 May 25;259(10):6397–6402. [PubMed] [Google Scholar]
  17. Miyazawa S., Osumi T., Hashimoto T. The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes. Eur J Biochem. 1980 Feb;103(3):589–596. doi: 10.1111/j.1432-1033.1980.tb05984.x. [DOI] [PubMed] [Google Scholar]
  18. Ozasa H., Furuta S., Miyazawa S., Osumi T., Hashimoto T., Mori M., Miura S., Tatibana M. Biosynthesis of enzymes of rat-liver mitochondrial beta-oxidation. Eur J Biochem. 1984 Nov 2;144(3):453–458. doi: 10.1111/j.1432-1033.1984.tb08487.x. [DOI] [PubMed] [Google Scholar]
  19. Robinson B. H., Sherwood W. G., Taylor J., Balfe J. W., Mamer O. A. Acetoacetyl CoA thiolase deficiency: a cause of severe ketoacidosis in infancy simulating salicylism. J Pediatr. 1979 Aug;95(2):228–233. doi: 10.1016/s0022-3476(79)80656-3. [DOI] [PubMed] [Google Scholar]
  20. Schram A. W., Strijland A., Hashimoto T., Wanders R. J., Schutgens R. B., van den Bosch H., Tager J. M. Biosynthesis and maturation of peroxisomal beta-oxidation enzymes in fibroblasts in relation to the Zellweger syndrome and infantile Refsum disease. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6156–6158. doi: 10.1073/pnas.83.16.6156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schutgens R. B., Middleton B., vd Blij J. F., Oorthuys J. W., Veder H. A., Vulsma T., Tegelaers W. H. Beta-ketothiolase deficiency in a family confirmed by in vitro enzymatic assays in fibroblasts. Eur J Pediatr. 1982 Sep;139(1):39–42. doi: 10.1007/BF00442077. [DOI] [PubMed] [Google Scholar]
  22. Tager J. M., Van der Beek W. A., Wanders R. J., Hashimoto T., Heymans H. S., Van den Bosch H., Schutgens R. B., Schram A. W. Peroxisomal beta-oxidation enzyme proteins in the Zellweger syndrome. Biochem Biophys Res Commun. 1985 Feb 15;126(3):1269–1275. doi: 10.1016/0006-291x(85)90322-5. [DOI] [PubMed] [Google Scholar]
  23. Takiguchi M., Mori M., Tatibana M. A simple and rapid procedure for high-yield isolation of essentially undegraded free and membrane-bound polysomes from rat liver. J Biochem. 1985 May;97(5):1447–1459. doi: 10.1093/oxfordjournals.jbchem.a135199. [DOI] [PubMed] [Google Scholar]
  24. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES