Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 May;81(5):1365–1369. doi: 10.1172/JCI113464

Use of laminar flow and unstirred layer models to predict intestinal absorption in the rat.

M D Levitt 1, J M Kneip 1, D G Levitt 1
PMCID: PMC442565  PMID: 3366899

Abstract

Carbon monoxide (CO) and [14C]warfarin were used to measure the preepithelial diffusion resistance resulting from poor luminal stirring (RL) in the constantly perfused rat jejunum at varying degrees of distension (0.05, 0.1, and 0.2 ml/cm). RL was much greater than epithelial cell resistance, indicating that poor stirring was the limiting factor in absorption and that an appropriate model of stirring should accurately predict absorption. A laminar flow model accurately predicted the absorption rate of both probes at all levels of gut distension, as well as the absorption of glucose when RL was the rate-limiting factor in absorption. In contrast, an unstirred layer model would not have predicted that gut distension would have little influence on absorption, and would have underestimated [14C]warfarin absorption relative to CO. We concluded that in the perfused rat jejunum, laminar flow accurately models luminal stirring and an unstirred layer should be considered to be a unit of resistance in laminar flow, rather than a model of luminal stirring.

Full text

PDF
1365

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amidon G. L., Kou J., Elliott R. L., Lightfoot E. N. Analysis of models for determining intestinal wall permeabilities. J Pharm Sci. 1980 Dec;69(12):1369–1373. doi: 10.1002/jps.2600691204. [DOI] [PubMed] [Google Scholar]
  2. Bond J. H., Levitt M. D. Use of microspheres to measure small intestinal villus blood flow in the dog. Am J Physiol. 1979 May;236(5):E577–E583. doi: 10.1152/ajpendo.1979.236.5.E577. [DOI] [PubMed] [Google Scholar]
  3. Cooper H., Levitan R., Fordtran J. S., Ingelfinger F. J. A method for studying absorption of water and solute from the human small intestine. Gastroenterology. 1966 Jan;50(1):1–7. [PubMed] [Google Scholar]
  4. Elliott R. L., Amidon G. L., Lightfoot E. N. A convective mass transfer model for determining intestinal wall permeabilities: laminar flow in a circular tube. J Theor Biol. 1980 Dec 21;87(4):757–771. doi: 10.1016/0022-5193(80)90115-0. [DOI] [PubMed] [Google Scholar]
  5. Finkelstein A. Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol. 1976 Aug;68(2):127–135. doi: 10.1085/jgp.68.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Granger D. N., Harper S. L., Korthuis R. J., Bohlen H. G., Kvietys P. R. Intestinal vasoregulation in spontaneously hypertensive rats. Am J Physiol. 1985 Dec;249(6 Pt 1):G786–G791. doi: 10.1152/ajpgi.1985.249.6.G786. [DOI] [PubMed] [Google Scholar]
  7. Harris M. S., Dobbins J. W., Binder H. J. Augmentation of neutral sodium chloride absorption by increased flow rate in rat ileum in vivo. J Clin Invest. 1986 Aug;78(2):431–438. doi: 10.1172/JCI112594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kampp M., Lundgren O., Nilsson N. J. Extravascular shunting of oxygen in the small intestine of the cat. Acta Physiol Scand. 1968 Apr;72(4):396–403. doi: 10.1111/j.1748-1716.1968.tb03864.x. [DOI] [PubMed] [Google Scholar]
  9. Larsen F. G., Larsen C. G., Jakobsen P., Brodersen R. Interaction of warfarin with human serum albumin. A stoichiometric description. Mol Pharmacol. 1985 Feb;27(2):263–270. [PubMed] [Google Scholar]
  10. Levitt M. D., Aufderheide T., Fetzer C. A., Bond J. H., Levitt D. G. Use of carbon monoxide to measure luminal stirring in the rat gut. J Clin Invest. 1984 Dec;74(6):2056–2064. doi: 10.1172/JCI111629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levitt M. D., Fetzer C. A., Kneip J. M., Bond J. H., Levitt D. G. Quantitative assessment of luminal stirring in the perfused small intestine of the rat. Am J Physiol. 1987 Mar;252(3 Pt 1):G325–G332. doi: 10.1152/ajpgi.1987.252.3.G325. [DOI] [PubMed] [Google Scholar]
  12. Miyamoto Y., Hanano M., Iga T., Ishikawa M. A drug absorption model of the intestinal tract based on the two-dimensional laminar flow in a circular tube. J Pharmacobiodyn. 1982 Jun;5(6):445–447. doi: 10.1248/bpb1978.5.445. [DOI] [PubMed] [Google Scholar]
  13. Mungall D., Wong Y. Y., Talbert R. L., Crawford M. H., Marshall J., Hawkins D. W., Ludden T. M. Plasma protein binding of warfarin: methodological considerations. J Pharm Sci. 1984 Jul;73(7):1000–1001. doi: 10.1002/jps.2600730738. [DOI] [PubMed] [Google Scholar]
  14. O'Reilly R. A., Goulart D. A. Comparative interaction of sulfinpyrazone and phenylbutazone with racemic warfarin: alteration in vivo of free fraction of plasma warfarin. J Pharmacol Exp Ther. 1981 Dec;219(3):691–694. [PubMed] [Google Scholar]
  15. Smithson K. W., Millar D. B., Jacobs L. R., Gray G. M. Intestinal diffusion barrier: unstirred water layer or membrane surface mucous coat? Science. 1981 Dec 11;214(4526):1241–1244. doi: 10.1126/science.7302593. [DOI] [PubMed] [Google Scholar]
  16. Sun S. F., Kuo S. W., Nash R. A. Study of binding of warfarin to serum albumins by high-performance liquid chromatography. J Chromatogr. 1984 Apr 24;288(2):377–388. doi: 10.1016/s0021-9673(01)93714-8. [DOI] [PubMed] [Google Scholar]
  17. Thomson A. B. Intestinal uptake of fatty acids, cholesterol and decanol in ileal resected rabbits: effect of Isocal and Portagen. Comp Biochem Physiol A Comp Physiol. 1985;82(4):819–826. doi: 10.1016/0300-9629(85)90489-x. [DOI] [PubMed] [Google Scholar]
  18. Westergaard H., Dietschy J. M. Delineation of the dimensions and permeability characteristics of the two major diffusion barriers to passive mucosal uptake in the rabbit intestine. J Clin Invest. 1974 Sep;54(3):718–732. doi: 10.1172/JCI107810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Westergaard H., Holtermüller K. H., Dietschy J. M. Measurement of resistance of barriers to solute transport in vivo in rat jejunum. Am J Physiol. 1986 Jun;250(6 Pt 1):G727–G735. doi: 10.1152/ajpgi.1986.250.6.G727. [DOI] [PubMed] [Google Scholar]
  20. Winne D., Markgraf I. The longitudinal intraluminal concentration gradient in the perfused rat jejunum and the appropriate mean concentration for calculation of the absorption rate. Naunyn Schmiedebergs Arch Pharmacol. 1979 Nov;309(3):271–279. doi: 10.1007/BF00504760. [DOI] [PubMed] [Google Scholar]
  21. Winne D. Rat jejunum perfused in situ: effect of perfusion rate and intraluminal radius on absorption rate and effective unstirred layer thickness. Naunyn Schmiedebergs Arch Pharmacol. 1979 Jul;307(3):265–274. doi: 10.1007/BF00505943. [DOI] [PubMed] [Google Scholar]
  22. Yuasa H., Miyamoto Y., Iga T., Hanano M. A laminar flow absorption model for a carrier-mediated transport in the intestinal tract. J Pharmacobiodyn. 1984 Aug;7(8):604–606. doi: 10.1248/bpb1978.7.604. [DOI] [PubMed] [Google Scholar]
  23. Yuasa H., Miyamoto Y., Iga T., Hanano M. Determination of kinetic parameters of a carrier-mediated transport in the perfused intestine by two-dimensional laminar flow model: effects of the unstirred water layer. Biochim Biophys Acta. 1986 Apr 14;856(2):219–230. doi: 10.1016/0005-2736(86)90031-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES