Abstract
RNA replication in the bacteriophage Q beta system can, in principle, transmit sequence complexity at a higher rate than it increases entropy. Expanding the variety of nucleotides, through novel base-pair interactions, would move the threshold at which synthesis produces more complexity than entropy away from near equilibrium while accelerating the system approach to equilibrium. A decrease in sequence complexity during polymerization, leading to a many-to-one monomer correspondence with template, cannot be reversed, owing to symmetry restrictions. In terms of the kinetic mechanism, uncertainty associated with the the path of depolymerization yields a path entropy which selectively prolongs the reverse reaction. Together with an elevation in thermodynamic entropy, therefore, there are two possible sources of irreversibility in a physical process. Some implications of kinetic irreversibility are considered in relation to the second law of thermodynamics and to the processing and translation of mRNA.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batschelet E., Domingo E., Weissmann C. The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene. 1976;1(1):27–32. doi: 10.1016/0378-1119(76)90004-4. [DOI] [PubMed] [Google Scholar]
- COREY R. B., PAULING L. Specific hydrogen-bond formation between pyramidines and purines in deoxyribonucleic acids. Arch Biochem Biophys. 1956 Nov;65(1):164–181. doi: 10.1016/0003-9861(56)90185-0. [DOI] [PubMed] [Google Scholar]
- Davis B. K. Chain propagation and polypeptide polymerization rate. J Theor Biol. 1971 Jan;30(1):203–210. doi: 10.1016/0022-5193(71)90045-2. [DOI] [PubMed] [Google Scholar]
- Davis B. K. Complexity transmission during replication. Proc Natl Acad Sci U S A. 1979 May;76(5):2288–2292. doi: 10.1073/pnas.76.5.2288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis B. K. Rate of polymer formation and entropy production during competitive replication. J Mol Evol. 1978 Feb 21;10(4):325–338. doi: 10.1007/BF01734222. [DOI] [PubMed] [Google Scholar]
- Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971 Oct;58(10):465–523. doi: 10.1007/BF00623322. [DOI] [PubMed] [Google Scholar]
- MARMUR J., DOTY P. Thermal renaturation of deoxyribonucleic acids. J Mol Biol. 1961 Oct;3:585–594. doi: 10.1016/s0022-2836(61)80023-5. [DOI] [PubMed] [Google Scholar]
- Orgel L. E. Molecular replication. Nature. 1992 Jul 16;358(6383):203–209. doi: 10.1038/358203a0. [DOI] [PubMed] [Google Scholar]
- Piccirilli J. A., Krauch T., Moroney S. E., Benner S. A. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature. 1990 Jan 4;343(6253):33–37. doi: 10.1038/343033a0. [DOI] [PubMed] [Google Scholar]
- Priano C., Kramer F. R., Mills D. R. Evolution of the RNA coliphages: the role of secondary structures during RNA replication. Cold Spring Harb Symp Quant Biol. 1987;52:321–330. doi: 10.1101/sqb.1987.052.01.037. [DOI] [PubMed] [Google Scholar]
- Szathmáry E. What is the optimum size for the genetic alphabet? Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2614–2618. doi: 10.1073/pnas.89.7.2614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wetmur J. G., Davidson N. Kinetics of renaturation of DNA. J Mol Biol. 1968 Feb 14;31(3):349–370. doi: 10.1016/0022-2836(68)90414-2. [DOI] [PubMed] [Google Scholar]
- Zurek WH. Algorithmic randomness and physical entropy. Phys Rev A Gen Phys. 1989 Oct 15;40(8):4731–4751. doi: 10.1103/physreva.40.4731. [DOI] [PubMed] [Google Scholar]