Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 May;81(5):1578–1584. doi: 10.1172/JCI113491

Phorbol ester and A23187 have additive but mechanistically separate effects on vasopressin action in rabbit collecting tubule.

Y Ando 1, H R Jacobson 1, M D Breyer 1
PMCID: PMC442592  PMID: 3130397

Abstract

Activation of protein kinase C (PKC) and elevation of intracellular calcium ion concentration ([Ca++]i) result from phosphatidylinositol biphosphate (PIP2) breakdown. We previously demonstrated that PKC activation inhibits arginine vasopressin (AVP)-induced osmotic water flow in rabbit cortical collecting tubule (CCT) perfused in vitro at 37 degrees C. To estimate the potential significance of PIP2 turnover as a modulator of water transport in this nephron segment, we examined the effect of Ca on AVP action and explored the mechanisms of action of PKC and increased [Ca++]i. In rabbit CCTs perfused at 37 degrees C, pretreatment with bath A23187 (2 x 10(-8) M, 2 x 10(-6) M), a Ca ionophore, almost totally suppressed AVP (10 microU/ml)-induced peak hydraulic conductivity (Lp). The suppression by 2 x 10(-8) M A23187 was as potent as that by 2 x 10(-6) M A23187, and significant even when it was administered 10 min after AVP. When phorbol myristate acetate (PMA, 10(-9) M), a PKC activator, and A23187 (2 x 10(-8) M) were placed in the bath simultaneously, the combined suppressive effect on peak Lp was greater than that of either inhibitor alone. However, the mechanisms of inhibition by PMA and A23187 were different. While both 10(-7) and 10(-9) M PMA suppression are primarily post-cAMP, A23187 predominantly suppressed a pre-cAMP step: 10(-4) M chlorophenylthio-cAMP-induced peak Lp was not affected by 2 x 10(-8) M A23187, and only partially inhibited by 2 x 10(-6) M A23187. The PMA (10(-7) M) suppression of AVP-induced peak Lp was totally reversed by bath staurosporine (10(-7) M), a PKC inhibitor, but not attenuated by either bath indomethacin (5 x 10(-6) M) or low Ca (1-2 x 10(-6) M) bath medium. In contrast, the A23187 (2 x 10(-8) M) suppression of the peak Lp was not affected by staurosporine, but was significantly reversed by indomethacin or low Ca bath medium. We conclude: (a) Elevation of [Ca++]i, as well as activation of PKC, suppresses the hydroosmotic effect of AVP on CCT at 37 degrees C. (b) When stimulated simultaneously these two intracellular mediators are additive in their antagonism of AVP action. These results suggest that stimulated PIP2 breakdown may be an important modulator of water transport in CCT. (c) Different mechanisms underlie PKC and Ca-mediated suppression of the AVP-induced water transport. The inhibition of AVP action by increased [Ca++]i is primarily pre-cAMP, and involves a cyclooxygenase metabolite(s) of arachidonic acid, while the inhibition by PKC is post-cAMP, and independent of cyclooxygenase products of arachidonic acid.

Full text

PDF
1578

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando Y., Jacobson H. R., Breyer M. D. Phorbol myristate acetate, dioctanoylglycerol, and phosphatidic acid inhibit the hydroosmotic effect of vasopressin on rabbit cortical collecting tubule. J Clin Invest. 1987 Aug;80(2):590–593. doi: 10.1172/JCI113110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Argy W. P., Jr, Handler J. S., Orloff J. Ca++ and Mg++ effects on toad bladder response to cyclic AMP, theophylline, and ADH analogues. Am J Physiol. 1967 Sep;213(3):803–808. doi: 10.1152/ajplegacy.1967.213.3.803. [DOI] [PubMed] [Google Scholar]
  3. Arruda J. A. Interaction of calcium and cyclooxygenase inhibitors on transport by the turtle and toad bladders. Arch Int Pharmacodyn Ther. 1982 Jun;257(2):319–334. [PubMed] [Google Scholar]
  4. Arruda J. A., Sabatini S. Cholinergic modulation of water transport in the toad bladder. Am J Physiol. 1980 Aug;239(2):F154–F159. doi: 10.1152/ajprenal.1980.239.2.F154. [DOI] [PubMed] [Google Scholar]
  5. Ausiello D. A., Hall D. Regulation of vasopressin-sensitive adenylate cyclase by calmodulin. J Biol Chem. 1981 Oct 10;256(19):9796–9798. [PubMed] [Google Scholar]
  6. Cogan E., Abramow M. Inhibition by lithium of the hydroosmotic action of vasopressin in the isolated perfused cortical collecting tubule of the rabbit. J Clin Invest. 1986 May;77(5):1507–1514. doi: 10.1172/JCI112465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Craven P. A., DeRubertis F. R. Ca2+.Calmodulin-dependent release of arachidonic acid for renal medullary prostaglandin synthesis. Evidence for involvement of phospholipases A2 and C. J Biol Chem. 1983 Apr 25;258(8):4814–4823. [PubMed] [Google Scholar]
  8. Dillingham M. A., Dixon B. S., Anderson R. J. Calcium modulates vasopressin effect in rabbit cortical collecting tubule. Am J Physiol. 1987 Jan;252(1 Pt 2):F115–F121. doi: 10.1152/ajprenal.1987.252.1.F115. [DOI] [PubMed] [Google Scholar]
  9. Du Bois R., Vernoiry A., Abramow M. Computation of the osmotic water permeability of perfused tubule segments. Kidney Int. 1976 Dec;10(6):478–479. doi: 10.1038/ki.1976.135. [DOI] [PubMed] [Google Scholar]
  10. Erne P., Schachter M., Fabbro D., Miles C. M., Sever P. S. Calcium transients in human platelets monitored by aequorin, fura-2 and quin-2: effects of protein kinase C activation and inhibition. Biochem Biophys Res Commun. 1987 May 29;145(1):66–72. doi: 10.1016/0006-291x(87)91288-5. [DOI] [PubMed] [Google Scholar]
  11. Exton J. H. Role of calcium and phosphoinositides in the actions of certain hormones and neurotransmitters. J Clin Invest. 1985 Jun;75(6):1753–1757. doi: 10.1172/JCI111886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Flower R. J. Drugs which inhibit prostaglandin biosynthesis. Pharmacol Rev. 1974 Mar;26(1):33–67. [PubMed] [Google Scholar]
  13. Goldfarb S. Effects of calcium on ADH action in the cortical collecting tubule perfused in vitro. Am J Physiol. 1982 Nov;243(5):F481–F486. doi: 10.1152/ajprenal.1982.243.5.F481. [DOI] [PubMed] [Google Scholar]
  14. Hall D. A., Grantham J. J. Temperature effect on ADH response of isolated perfused rabbit collecting tubules. Am J Physiol. 1980 Dec;239(6):F595–F601. doi: 10.1152/ajprenal.1980.239.6.F595. [DOI] [PubMed] [Google Scholar]
  15. Handler J., Petersen M., Orloff J. Effect of metabolic inhibitors on the response of the toad bladder to vasopressin. Am J Physiol. 1966 Nov;211(5):1175–1180. doi: 10.1152/ajplegacy.1966.211.5.1175. [DOI] [PubMed] [Google Scholar]
  16. Hardy M. A. Intracellular calcium as a modulator of transepithelial permeability to water in frog urinary bladder. J Cell Biol. 1978 Mar;76(3):787–791. doi: 10.1083/jcb.76.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hoch B. S., Levine S. D. Cholera toxin enhances adenylate cyclase-dependent transport in toad urinary bladder. Am J Physiol. 1987 Apr;252(4 Pt 2):F621–F626. doi: 10.1152/ajprenal.1987.252.4.F621. [DOI] [PubMed] [Google Scholar]
  18. Kaibuchi K., Takai Y., Sawamura M., Hoshijima M., Fujikura T., Nishizuka Y. Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J Biol Chem. 1983 Jun 10;258(11):6701–6704. [PubMed] [Google Scholar]
  19. Kikkawa U., Nishizuka Y. The role of protein kinase C in transmembrane signalling. Annu Rev Cell Biol. 1986;2:149–178. doi: 10.1146/annurev.cb.02.110186.001053. [DOI] [PubMed] [Google Scholar]
  20. Kurtz A., Pfeilschifter J., Hutter A., Bührle C., Nobiling R., Taugner R., Hackenthal E., Bauer C. Role of protein kinase C in inhibition of renin release caused by vasoconstrictors. Am J Physiol. 1986 Apr;250(4 Pt 1):C563–C571. doi: 10.1152/ajpcell.1986.250.4.C563. [DOI] [PubMed] [Google Scholar]
  21. Kusano E., Murayama N., Werness J. L., Christensen S., Homma S., Yusufi A. N., Dousa T. P. Effects of calcium on the vasopressin-sensitive cAMP metabolism in medullary tubules. Am J Physiol. 1985 Dec;249(6 Pt 2):F956–F966. doi: 10.1152/ajprenal.1985.249.6.F956. [DOI] [PubMed] [Google Scholar]
  22. Marumo F., Edelman I. S. Effects of Ca++ and prostaglandin E1 on vasopressin activation of renal adenyl cyclase. J Clin Invest. 1971 Aug;50(8):1613–1620. doi: 10.1172/JCI106649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Michell R. H. Polyphosphoinositide breakdown as the initiating reaction in receptor-stimulated inositol phospholipid metabolism. Life Sci. 1983 May 2;32(18):2083–2085. doi: 10.1016/0024-3205(83)90095-4. [DOI] [PubMed] [Google Scholar]
  24. Moolenaar W. H., Kruijer W., Tilly B. C., Verlaan I., Bierman A. J., de Laat S. W. Growth factor-like action of phosphatidic acid. Nature. 1986 Sep 11;323(6084):171–173. doi: 10.1038/323171a0. [DOI] [PubMed] [Google Scholar]
  25. Nadler S. P., Hebert S. C., Brenner B. M. PGE2, forskolin, and cholera toxin interactions in rabbit cortical collecting tubule. Am J Physiol. 1986 Jan;250(1 Pt 2):F127–F135. doi: 10.1152/ajprenal.1986.250.1.F127. [DOI] [PubMed] [Google Scholar]
  26. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  27. Ohuchi K., Levine L. Stimulation of prostaglandin synthesis by tumor-promoting phorbol-12, 13-diesters in canine kidney (MDCK) cells. Cycloheximide inhibits the stimulated prostaglandin synthesis, deacylation of lipids, and morphological changes. J Biol Chem. 1978 Jul 10;253(13):4783–4790. [PubMed] [Google Scholar]
  28. Rasmussen H., Kojima I., Kojima K., Zawalich W., Apfeldorf W. Calcium as intracellular messenger: sensitivity modulation, C-kinase pathway, and sustained cellular response. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;18:159–193. [PubMed] [Google Scholar]
  29. Sabatini S. Parathyroid hormone inhibits water flow in the isolated toad bladder. Am J Physiol. 1986 Mar;250(3 Pt 2):F532–F538. doi: 10.1152/ajprenal.1986.250.3.F532. [DOI] [PubMed] [Google Scholar]
  30. Sawyer S. T., Cohen S. Enhancement of calcium uptake and phosphatidylinositol turnover by epidermal growth factor in A-431 cells. Biochemistry. 1981 Oct 13;20(21):6280–6286. doi: 10.1021/bi00524a057. [DOI] [PubMed] [Google Scholar]
  31. Takai Y., Kikkawa U., Kaibuchi K., Nishizuka Y. Membrane phospholipid metabolism and signal transduction for protein phosphorylation. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;18:119–158. [PubMed] [Google Scholar]
  32. Takuwa Y., Takuwa N., Rasmussen H. Carbachol induces a rapid and sustained hydrolysis of polyphosphoinositide in bovine tracheal smooth muscle measurements of the mass of polyphosphoinositides, 1,2-diacylglycerol, and phosphatidic acid. J Biol Chem. 1986 Nov 5;261(31):14670–14675. [PubMed] [Google Scholar]
  33. Taylor A., Eich E., Pearl M., Brem A. S., Peeper E. Q. Cytosolic calcium and the action of vasopressin in toad urinary bladder. Am J Physiol. 1987 Jun;252(6 Pt 2):F1028–F1041. doi: 10.1152/ajprenal.1987.252.6.F1028. [DOI] [PubMed] [Google Scholar]
  34. Yorio T., Henry S. L., Hodges D. H., Caffrey J. L. Role of calcium and prostaglandins in the antidiuretic hormone response. Effect of ionophore A23187. Biochem Pharmacol. 1983 Mar 15;32(6):1113–1118. doi: 10.1016/0006-2952(83)90634-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES