Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 May;81(5):1585–1592. doi: 10.1172/JCI113492

Indomethacin secretion in the isolated perfused proximal straight rabbit tubule. Evidence for two parallel transport mechanisms.

D de Zeeuw 1, H R Jacobson 1, D C Brater 1
PMCID: PMC442593  PMID: 3366908

Abstract

We studied indomethacin as a probe of anion transport across the isolated perfused proximal straight tubule of the rabbit and discovered that a substantial component of transport may occur by anion exchange at the basolateral membrane. Various perturbations involving direct or indirect dissipation of the cellular sodium gradient (ouabain, sodium- or potassium-free solutions, cooling to 18 degrees C) resulted in only a 50% inhibition of indomethacin transport, which raised the question of a co-existent alternative pathway for secretion. Similarly, the anion exchange inhibitor, 4,4'-diisothiocyanostilbene (DIDS), diminished indomethacin secretion by only 50%. Cooling followed by DIDS or the reverse sequence resulted in additive inhibition such that the combination abolished active secretion of indomethacin. We conclude that active secretion of indomethacin by the proximal straight tubule appears to be in part sodium gradient dependent; the remainder may be driven by an anion exchanger on the basolateral membrane.

Full text

PDF
1585

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURG M. B., ORLOFF J. Effect of strophanthidin on electrolyte content and PAH accumulation of rabbit kidney slices. Am J Physiol. 1962 Mar;202:565–571. doi: 10.1152/ajplegacy.1962.202.3.565. [DOI] [PubMed] [Google Scholar]
  2. Berner W., Kinne R. Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex. Pflugers Arch. 1976 Feb 24;361(3):269–277. doi: 10.1007/BF00587292. [DOI] [PubMed] [Google Scholar]
  3. Biagi B. A., Giebisch G. Temperature dependence of transepithelial potential in isolated perfused rabbit proximal tubules. Am J Physiol. 1979 Mar;236(3):F302–F310. doi: 10.1152/ajprenal.1979.236.3.F302. [DOI] [PubMed] [Google Scholar]
  4. Brot-Laroche E., Serrano M. A., Delhomme B., Alvarado F. Different temperature sensitivity and cation specificity of two distinct D-glucose/Na+ cotransport systems in the intestinal brush-border membrane. Ann N Y Acad Sci. 1985;456:47–50. doi: 10.1111/j.1749-6632.1985.tb14843.x. [DOI] [PubMed] [Google Scholar]
  5. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  6. Chung S. T., Park Y. S., Hong S. K. Effect of cations on transport of weak organic acids in rabbit kidney slices. Am J Physiol. 1970 Jul;219(1):30–33. doi: 10.1152/ajplegacy.1970.219.1.30. [DOI] [PubMed] [Google Scholar]
  7. Dantzler W. H., Bentley S. K. Bath and lumen effects of SITS on PAH transport by isolated perfused renal tubules. Am J Physiol. 1980 Jan;238(1):F16–F25. doi: 10.1152/ajprenal.1980.238.1.F16. [DOI] [PubMed] [Google Scholar]
  8. Dantzler W. H., Bentley S. K. Low Na+ effects on PAH transport and permeabilities in isolated snake renal tubules. Am J Physiol. 1976 Feb;230(2):256–262. doi: 10.1152/ajplegacy.1976.230.2.256. [DOI] [PubMed] [Google Scholar]
  9. Dantzler W. H. Effects of K, Na, and ouabain on urate and PAH uptake by snake and chicken kidney slices. Am J Physiol. 1969 Nov;217(5):1510–1519. doi: 10.1152/ajplegacy.1969.217.5.1510. [DOI] [PubMed] [Google Scholar]
  10. De Zeeuw D., Leinfelder J. L., Brater D. C. Highly sensitive measurement of indomethacin using a high-performance liquid chromatographic technique combined with post-column in-line hydrolysis. J Chromatogr. 1986 Jul 11;380(1):157–162. doi: 10.1016/s0378-4347(00)83637-3. [DOI] [PubMed] [Google Scholar]
  11. Donoso V. S., Grantham J. J. Characteristics of renal p-aminohippurate and urate excretion in rabbits. J Lab Clin Med. 1986 Apr;107(4):315–321. [PubMed] [Google Scholar]
  12. Duggan D. E., Hogans A. F., Kwan K. C., McMahon F. G. The metabolism of indomethacin in man. J Pharmacol Exp Ther. 1972 Jun;181(3):563–575. [PubMed] [Google Scholar]
  13. Faed E. M. Properties of acyl glucuronides: implications for studies of the pharmacokinetics and metabolism of acidic drugs. Drug Metab Rev. 1984;15(5-6):1213–1249. doi: 10.3109/03602538409033562. [DOI] [PubMed] [Google Scholar]
  14. Gerencser G. A., Hong S. K. Roles of sodium and potassium ions on p-aminohippurate transport in rabbit kidney slices. Biochim Biophys Acta. 1975 Sep 16;406(1):108–119. doi: 10.1016/0005-2736(75)90046-2. [DOI] [PubMed] [Google Scholar]
  15. Grantham J. J., Qualizza P. B., Irwin R. L. Net fluid secretion in proximal straight renal tubules in vitro: role of PAH. Am J Physiol. 1974 Jan;226(1):191–197. doi: 10.1152/ajplegacy.1974.226.1.191. [DOI] [PubMed] [Google Scholar]
  16. Grantham J. J. Studies of organic anion and cation transport in isolated segments of proximal tubules. Kidney Int. 1982 Nov;22(5):519–525. doi: 10.1038/ki.1982.205. [DOI] [PubMed] [Google Scholar]
  17. Hayashi H., Hoshi T. Sodium-dependence of p-aminohippurate transport by rat kidney cortex slices. Arch Int Pharmacodyn Ther. 1979 Jul;240(1):103–115. [PubMed] [Google Scholar]
  18. Hong S. K., Goldinger J. M., Song Y. K., Koschier F. J., Lee S. H. Effect of SITS on organic anion transport in the rabbit kidney cortical slice. Am J Physiol. 1978 Apr;234(4):F302–F307. doi: 10.1152/ajprenal.1978.234.4.F302. [DOI] [PubMed] [Google Scholar]
  19. Hvidberg E., Lausen H. H., Jansen J. A. Indomethacin: plasma concentrations and protein binding in man. Eur J Clin Pharmacol. 1972 Mar;4(2):119–124. doi: 10.1007/BF00562508. [DOI] [PubMed] [Google Scholar]
  20. Kasher J. S., Holohan P. D., Ross C. R. Na+ gradient-dependent p-aminohippurate (PAH) transport in rat basolateral membrane vesicles. J Pharmacol Exp Ther. 1983 Oct;227(1):122–129. [PubMed] [Google Scholar]
  21. Koschier F. J., Stokols M. F., Goldinger J. M., Acara M., Hong S. K. Effect of DIDS on renal tubular transport. Am J Physiol. 1980 Feb;238(2):F99–106. doi: 10.1152/ajprenal.1980.238.2.F99. [DOI] [PubMed] [Google Scholar]
  22. Lee L. J., Cook J. A., Smith D. E. Renal transport kinetics of furosemide in the isolated perfused rat kidney. J Pharmacokinet Biopharm. 1986 Apr;14(2):157–174. doi: 10.1007/BF01065259. [DOI] [PubMed] [Google Scholar]
  23. Maxild J., Møller J. V., Iqbal Sheikh M. Involvement of Na+-K+-ATPase in p-aminohippurate transport by rabbit kidney tissue. J Physiol. 1981 Jun;315:189–201. doi: 10.1113/jphysiol.1981.sp013741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maxild J., Møller J. V., Sheikh M. I. An energy-dependent, sodium-independent component of active p-aminohippurate transport in rabbit renal cortex. J Physiol. 1981 Jan;310:273–283. doi: 10.1113/jphysiol.1981.sp013548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Møller J. V., Sheikh M. I. Renal organic anion transport system: pharmacological, physiological, and biochemical aspects. Pharmacol Rev. 1982 Dec;34(4):315–358. [PubMed] [Google Scholar]
  26. Rane A., Oelz O., Frolich J. C., Seyberth H. W., Sweetman B. J., Watson J. T., Wilkinson G. R., Oates J. A. Relation between plasma concentration of indomethacin and its effect on prostaglandin synthesis and platelet aggregation in man. Clin Pharmacol Ther. 1978 Jun;23(6):658–668. doi: 10.1002/cpt1978236658. [DOI] [PubMed] [Google Scholar]
  27. Schafer J. A., Troutman S. L., Andreoli T. E. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J Gen Physiol. 1974 Nov;64(5):582–607. doi: 10.1085/jgp.64.5.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sheikh M. I., Møller J. V. Nature of Na+-independent stimulation of renal transport of p-aminohippurate by exogenous metabolites. Biochem Pharmacol. 1983 Sep 15;32(18):2745–2749. doi: 10.1016/0006-2952(83)90086-2. [DOI] [PubMed] [Google Scholar]
  29. Soltoff S. P., Mandel L. J. Active ion transport in the renal proximal tubule. I. Transport and metabolic studies. J Gen Physiol. 1984 Oct;84(4):601–622. doi: 10.1085/jgp.84.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Spencer A. M., Sack J., Hong S. K. Relationship between PAH transport and Na-K-ATPase activity in the rabbit kidney. Am J Physiol. 1979 Feb;236(2):F126–F130. doi: 10.1152/ajprenal.1979.236.2.F126. [DOI] [PubMed] [Google Scholar]
  31. Tune B. M., Burg M. B., Patlak C. S. Characteristics of p-aminohippurate transport in proximal renal tubules. Am J Physiol. 1969 Oct;217(4):1057–1063. doi: 10.1152/ajplegacy.1969.217.4.1057. [DOI] [PubMed] [Google Scholar]
  32. Ullrich K. J., Capasso G., Rumrich G., Papavassiliou F., Klöss S. Coupling between proximal tubular transport processes. Studies with ouabain, SITS and HCO3-free solutions. Pflugers Arch. 1977 Apr 25;368(3):245–252. doi: 10.1007/BF00585203. [DOI] [PubMed] [Google Scholar]
  33. Ullrich K. J. Renal tubular mechanisms of organic solute transport. Kidney Int. 1976 Feb;9(2):134–148. doi: 10.1038/ki.1976.17. [DOI] [PubMed] [Google Scholar]
  34. Ullrich K. J., Rumrich G., Fritzsch G., Klöss S. Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney. I. Kinetics, influence of cations, anions, and capillary preperfusion. Pflugers Arch. 1987 Jul;409(3):229–235. doi: 10.1007/BF00583470. [DOI] [PubMed] [Google Scholar]
  35. Woodhall P. B., Tisher C. C., Simonton C. A., Robinson R. R. Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal tubules. J Clin Invest. 1978 May;61(5):1320–1329. doi: 10.1172/JCI109049. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES