Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Jun;81(6):1889–1895. doi: 10.1172/JCI113535

Activation of monocytes by interferon-gamma has no effect on the level or affinity of the nicotinamide adenine dinucleotide-phosphate oxidase and on agonist-dependent superoxide formation.

M Thelen 1, M Wolf 1, M Baggiolini 1
PMCID: PMC442640  PMID: 2838524

Abstract

Human monocytes purified by elutriation were cultured for 3 d in Teflon bags with or without human recombinant interferon-gamma (rIFN gamma). The cells were then collected and used in suspension to determine the rate of stimulus-dependent superoxide or hydrogen peroxide formation as a measure of the NADPH-oxidase. The treatment with IFN gamma increased this rate two- to threefold when phorbol myristate acetate (PMA) was used as the stimulus. By contrast, no IFN gamma-dependent increase in superoxide production was observed when the cells were stimulated with different concentrations of the receptor agonist N-formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe) alone or in combination with another receptor agonist, platelet-activating factor (PAF). At optimum concentrations, f-Met-Leu-Phe elicited rates of superoxide formation that could not be exceeded under other stimulatory conditions including PMA after treatment with IFN gamma. It thus appears that f-Met-Leu-Phe can lead to maximum activation of the NADPH-oxidase, and that this response is not influenced by IFN gamma. Treatment with IFN gamma also failed to affect the affinity of PMA- or f-Met-Leu-Phe-stimulated oxidase for NADPH, the Km values being 30 to 40 microM under all conditions. IFN gamma did not alter the cellular levels of cytochrome b558, as measured by low-temperature spectroscopy, and protein kinase C, as measured by [3H]phorbol dibutyrate binding, and did not appreciably influence the stimulus-dependent increase of cytosolic free calcium. These results indicate that activation of human mononuclear phagocytes by IFN gamma does not affect the level and the kinetic properties of NADPH-oxidase or its activation by receptor agonists. They confirm, however, that IFN gamma enhances the respiratory burst response to PMA.

Full text

PDF
1889

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alteri E., Leonard E. J. N-formylmethionyl-leucyl-[3H]phenylalanine binding, superoxide release, and chemotactic responses of human blood monocytes that repopulate the circulation during leukapheresis. Blood. 1983 Oct;62(4):918–923. [PubMed] [Google Scholar]
  2. Andreesen R., Picht J., Löhr G. W. Primary cultures of human blood-born macrophages grown on hydrophobic teflon membranes. J Immunol Methods. 1983 Feb 11;56(3):295–304. doi: 10.1016/s0022-1759(83)80019-2. [DOI] [PubMed] [Google Scholar]
  3. Becker S. Effect of interferon-gamma on class-II antigen expression and accessory cell function. Surv Immunol Res. 1985;4(2):135–145. doi: 10.1007/BF02918809. [DOI] [PubMed] [Google Scholar]
  4. Berton G., Cassatella M. A., Bellavite P., Rossi F. Molecular basis of macrophage activation. Expression of the low potential cytochrome b and its reduction upon cell stimulation in activated macrophages. J Immunol. 1986 Feb 15;136(4):1393–1399. [PubMed] [Google Scholar]
  5. Berton G., Cassatella M., Cabrini G., Rossi F. Activation of mouse macrophages causes no change in expression and function of phorbol diesters' receptors, but is accompanied by alterations in the activity and kinetic parameters of NADPH oxidase. Immunology. 1985 Feb;54(2):371–379. [PMC free article] [PubMed] [Google Scholar]
  6. Burgess S. K., Sahyoun N., Blanchard S. G., LeVine H., 3rd, Chang K. J., Cuatrecasas P. Phorbol ester receptors and protein kinase C in primary neuronal cultures: development and stimulation of endogenous phosphorylation. J Cell Biol. 1986 Jan;102(1):312–319. doi: 10.1083/jcb.102.1.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Butler W. L. Absorption spectroscopy of biological materials. Methods Enzymol. 1972;24:3–25. doi: 10.1016/0076-6879(72)24052-6. [DOI] [PubMed] [Google Scholar]
  8. Cassatella M. A., Della Bianca V., Berton G., Rossi F. Activation by gamma interferon of human macrophage capability to produce toxic oxygen molecules is accompanied by decreased Km of the superoxide-generating NADPH oxidase. Biochem Biophys Res Commun. 1985 Nov 15;132(3):908–914. doi: 10.1016/0006-291x(85)91893-5. [DOI] [PubMed] [Google Scholar]
  9. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  10. Clemetson K. J., McGregor J. L., McEver R. P., Jacques Y. V., Bainton D. F., Domzig W., Baggiolini M. Absence of platelet membrane glycoproteins IIb/IIIa from monocytes. J Exp Med. 1985 May 1;161(5):972–983. doi: 10.1084/jem.161.5.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dewald B., Baggiolini M. Activation of NADPH oxidase in human neutrophils. Synergism between fMLP and the neutrophil products PAF and LTB4. Biochem Biophys Res Commun. 1985 Apr 16;128(1):297–304. doi: 10.1016/0006-291x(85)91678-x. [DOI] [PubMed] [Google Scholar]
  12. Garotta G., Talmadge K. W., Pink J. R., Dewald B., Baggiolini M. Functional antagonism between type I and type II interferons on human macrophages. Biochem Biophys Res Commun. 1986 Nov 14;140(3):948–954. doi: 10.1016/0006-291x(86)90727-8. [DOI] [PubMed] [Google Scholar]
  13. Hartung H. P., Parnham M. J., Winkelmann J., Englberger W., Hadding U. Platelet activating factor (PAF) induces the oxidative burst in macrophages. Int J Immunopharmacol. 1983;5(2):115–121. doi: 10.1016/0192-0561(83)90002-4. [DOI] [PubMed] [Google Scholar]
  14. Hayashi H., Kudo I., Inoue K., Onozaki K., Tsushima S., Nomura H., Nojima S. Activation of guinea pig peritoneal macrophages by platelet activating factor (PAF) and its agonists. J Biochem. 1985 Jun;97(6):1737–1745. doi: 10.1093/oxfordjournals.jbchem.a135232. [DOI] [PubMed] [Google Scholar]
  15. Hogg N., Selvendran Y., Dougherty G., Allen C. Macrophage antigens and the effect of a macrophage activating factor, interferon-gamma. Ciba Found Symp. 1986;118:68–80. doi: 10.1002/9780470720998.ch6. [DOI] [PubMed] [Google Scholar]
  16. Hyslop P. A., Sklar L. A. A quantitative fluorimetric assay for the determination of oxidant production by polymorphonuclear leukocytes: its use in the simultaneous fluorimetric assay of cellular activation processes. Anal Biochem. 1984 Aug 15;141(1):280–286. doi: 10.1016/0003-2697(84)90457-3. [DOI] [PubMed] [Google Scholar]
  17. Iizuka T., Kanegasaki S., Makino R., Tanaka T., Ishimura Y. Studies on neutrophil b-type cytochrome in situ by low temperature absorption spectroscopy. J Biol Chem. 1985 Oct 5;260(22):12049–12053. [PubMed] [Google Scholar]
  18. Johnston R. B., Jr, Kitagawa S. Molecular basis for the enhanced respiratory burst of activated macrophages. Fed Proc. 1985 Nov;44(14):2927–2932. [PubMed] [Google Scholar]
  19. Kapuściński J., Skoczylas B. Simple and rapid fluorimetric method for DNA microassay. Anal Biochem. 1977 Nov;83(1):252–257. doi: 10.1016/0003-2697(77)90533-4. [DOI] [PubMed] [Google Scholar]
  20. Kleinerman E. S., Ceccorulli L. M., Bonvini E., Zicht R., Gallin J. I. Lysis of tumor cells by human blood monocytes by a mechanism independent of activation of the oxidative burst. Cancer Res. 1985 May;45(5):2058–2064. [PubMed] [Google Scholar]
  21. Le J., Vilcek J. Lymphokine-mediated activation of human monocytes: neutralization by monoclonal antibody to interferon-gamma. Cell Immunol. 1984 Apr 15;85(1):278–283. doi: 10.1016/0008-8749(84)90299-5. [DOI] [PubMed] [Google Scholar]
  22. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  23. Murray H. W., Byrne G. I., Rothermel C. D., Cartelli D. M. Lymphokine enhances oxygen-independent activity against intracellular pathogens. J Exp Med. 1983 Jul 1;158(1):234–239. doi: 10.1084/jem.158.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murray H. W., Cartelli D. M. Killing of intracellular Leishmania donovani by human mononuclear phagocytes. Evidence for oxygen-dependent and -independent leishmanicidal activity. J Clin Invest. 1983 Jul;72(1):32–44. doi: 10.1172/JCI110972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murray H. W., Rubin B. Y., Carriero S. M., Harris A. M., Jaffee E. A. Human mononuclear phagocyte antiprotozoal mechanisms: oxygen-dependent vs oxygen-independent activity against intracellular Toxoplasma gondii. J Immunol. 1985 Mar;134(3):1982–1988. [PubMed] [Google Scholar]
  26. Murray H. W., Rubin B. Y., Rothermel C. D. Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-gamma is the activating lymphokine. J Clin Invest. 1983 Oct;72(4):1506–1510. doi: 10.1172/JCI111107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nathan C. F., Prendergast T. J., Wiebe M. E., Stanley E. R., Platzer E., Remold H. G., Welte K., Rubin B. Y., Murray H. W. Activation of human macrophages. Comparison of other cytokines with interferon-gamma. J Exp Med. 1984 Aug 1;160(2):600–605. doi: 10.1084/jem.160.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Niedel J. E., Kuhn L. J., Vandenbark G. R. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci U S A. 1983 Jan;80(1):36–40. doi: 10.1073/pnas.80.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ruch W., Cooper P. H., Baggiolini M. Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horse-radish peroxidase. J Immunol Methods. 1983 Oct 28;63(3):347–357. doi: 10.1016/s0022-1759(83)80008-8. [DOI] [PubMed] [Google Scholar]
  31. Sasada M., Pabst M. J., Johnston R. B., Jr Activation of mouse peritoneal macrophages by lipopolysaccharide alters the kinetic parameters of the superoxide-producing NADPH oxidase. J Biol Chem. 1983 Aug 25;258(16):9631–9635. [PubMed] [Google Scholar]
  32. Schreiber R. D. Identification of gamma-interferon as a murine macrophage-activating factor for tumor cytotoxicity. Contemp Top Immunobiol. 1984;13:171–198. doi: 10.1007/978-1-4757-1445-6_9. [DOI] [PubMed] [Google Scholar]
  33. Schreiber R. D., Pace J. L., Russell S. W., Altman A., Katz D. H. Macrophage-activating factor produced by a T cell hybridoma: physiochemical and biosynthetic resemblance to gamma-interferon. J Immunol. 1983 Aug;131(2):826–832. [PubMed] [Google Scholar]
  34. Segal A. W., Garcia R., Goldstone H., Cross A. R., Jones O. T. Cytochrome b-245 of neutrophils is also present in human monocytes, macrophages and eosinophils. Biochem J. 1981 Apr 15;196(1):363–367. doi: 10.1042/bj1960363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Talmadge K. W., Gallati H., Sinigaglia F., Walz A., Garotta G. Identity between human interferon-gamma and "macrophage-activating factor" produced by human T lymphocytes. Eur J Immunol. 1986 Dec;16(12):1471–1477. doi: 10.1002/eji.1830161202. [DOI] [PubMed] [Google Scholar]
  36. Tsunawaki S., Nathan C. F. Enzymatic basis of macrophage activation. Kinetic analysis of superoxide production in lysates of resident and activated mouse peritoneal macrophages and granulocytes. J Biol Chem. 1984 Apr 10;259(7):4305–4312. [PubMed] [Google Scholar]
  37. Wymann M. P., von Tscharner V., Deranleau D. A., Baggiolini M. The onset of the respiratory burst in human neutrophils. Real-time studies of H2O2 formation reveal a rapid agonist-induced transduction process. J Biol Chem. 1987 Sep 5;262(25):12048–12053. [PubMed] [Google Scholar]
  38. von Tscharner V., Deranleau D. A., Baggiolini M. Calcium fluxes and calcium buffering in human neutrophils. J Biol Chem. 1986 Aug 5;261(22):10163–10168. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES