Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Jun;81(6):1903–1910. doi: 10.1172/JCI113537

Effects of acid-base variables on ion transport in rat colon.

D S Goldfarb 1, R W Egnor 1, A N Charney 1
PMCID: PMC442642  PMID: 3133396

Abstract

Alterations in arterial acid-base variables have important effects on colonic electrolyte transport in vivo. To confirm the relative effects of these variables and to characterize the transport processes involved, we measured unidirectional 22Na and 36Cl fluxes across short-circuited, distal colonic mucosa of Sprague-Dawley rats. Stripped tissues were studied in Hepes buffer and in Ringer's solutions at HCO3 concentrations of 11, 21, and 39 mM, and CO2 tensions between 0 and 69.6 mmHg. Increases in PCO2, but not in either pH or HCO3 concentration, caused similar increases in JNanet and JClnet (net flux of sodium and chloride, respectively) from -0.2 +/- 0.3 and -1.5 +/- 0.4 mu eq/cm2 per h at PCO2 = 0 to 6.8 +/- 0.6 and 7.6 +/- 0.7 mu eq/cm2 per h, respectively, at PCO2 = 69.6 mmHg. These increases were accounted for by changes in Jms and were accompanied by small decreases in Isc. 1 mM acetazolamide decreased both JNanet and JClnet and their responses to increases in CO2. 0.75 mM luminal amiloride prevented the increase in sodium absorption, but did not affect the CO2-induced increase in chloride absorption. In the presence of amiloride, CO2 increased JR (residual flux). 0.1 mM luminal furosemide did not affect the CO2-induced increases in JNanet in the absence or presence of amiloride. Changes in HCO3 concentration did not alter JR. We conclude that ambient CO2 effects active, electroneutral sodium absorption in the rat distal colon. The process stimulated by CO2 is dependent on mucosal carbonic anhydrase activity and most likely represents Na/H and Cl/HCO3 ion exchange.

Full text

PDF
1903

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
  2. Binder H. J., Foster E. S., Budinger M. E., Hayslett J. P. Mechanism of electroneutral sodium chloride absorption in distal colon of the rat. Gastroenterology. 1987 Sep;93(3):449–455. doi: 10.1016/0016-5085(87)90905-x. [DOI] [PubMed] [Google Scholar]
  3. Binder H. J., Rawlins C. L. Electrolyte transport across isolated large intestinal mucosa. Am J Physiol. 1973 Nov;225(5):1232–1239. doi: 10.1152/ajplegacy.1973.225.5.1232. [DOI] [PubMed] [Google Scholar]
  4. Budinger M. E., Foster E. S., Hayslett J. P., Binder H. J. Sodium and chloride transport in the large intestine of potassium-loaded rats. Am J Physiol. 1986 Aug;251(2 Pt 1):G249–G252. doi: 10.1152/ajpgi.1986.251.2.G249. [DOI] [PubMed] [Google Scholar]
  5. Charney A. N., Arnold M., Johnstone N. Acute respiratory alkalosis and acidosis and rabbit intestinal ion transport in vivo. Am J Physiol. 1983 Feb;244(2):G145–G150. doi: 10.1152/ajpgi.1983.244.2.G145. [DOI] [PubMed] [Google Scholar]
  6. Charney A. N., Haskell L. P. Relative effects of systemic pH, PCO2, and HCO3 concentration on colonic ion transport. Am J Physiol. 1984 Feb;246(2 Pt 1):G159–G165. doi: 10.1152/ajpgi.1984.246.2.G159. [DOI] [PubMed] [Google Scholar]
  7. Charney A. N., Wagner J. D., Birnbaum G. J., Johnstone J. N. Functional role of carbonic anhydrase in intestinal electrolyte transport. Am J Physiol. 1986 Nov;251(5 Pt 1):G682–G687. doi: 10.1152/ajpgi.1986.251.5.G682. [DOI] [PubMed] [Google Scholar]
  8. Feldman G. M., Berman S. F., Stephenson R. L. Bicarbonate secretion in rat distal colon in vitro: a measurement technique. Am J Physiol. 1988 Mar;254(3 Pt 1):C383–C390. doi: 10.1152/ajpcell.1988.254.3.C383. [DOI] [PubMed] [Google Scholar]
  9. Feldman G. M., Charney A. N. Effect of acute metabolic alkalosis and acidosis on intestinal electrolyte transport in vivo. Am J Physiol. 1980 Nov;239(5):G427–G436. doi: 10.1152/ajpgi.1980.239.5.G427. [DOI] [PubMed] [Google Scholar]
  10. Feldman G. M., Charney A. N. Effect of acute respiratory alkalosis and acidosis on intestinal ion transport in vivo. Am J Physiol. 1982 May;242(5):G486–G492. doi: 10.1152/ajpgi.1982.242.5.G486. [DOI] [PubMed] [Google Scholar]
  11. Foster E. S., Budinger M. E., Hayslett J. P., Binder H. J. Ion transport in proximal colon of the rat. Sodium depletion stimulates neutral sodium chloride absorption. J Clin Invest. 1986 Jan;77(1):228–235. doi: 10.1172/JCI112281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Foster E. S., Dudeja P. K., Brasitus T. A. Na+-H+ exchange in rat colonic brush-border membrane vesicles. Am J Physiol. 1986 Jun;250(6 Pt 1):G781–G787. doi: 10.1152/ajpgi.1986.250.6.G781. [DOI] [PubMed] [Google Scholar]
  13. Foster E. S., Zimmerman T. W., Hayslett J. P., Binder H. J. Corticosteroid alteration of active electrolyte transport in rat distal colon. Am J Physiol. 1983 Nov;245(5 Pt 1):G668–G675. doi: 10.1152/ajpgi.1983.245.5.G668. [DOI] [PubMed] [Google Scholar]
  14. Frizzell R. A., Koch M. J., Schultz S. G. Ion transport by rabbit colon. I. Active and passive components. J Membr Biol. 1976;27(3):297–316. doi: 10.1007/BF01869142. [DOI] [PubMed] [Google Scholar]
  15. Grinstein S., Rothstein A. Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol. 1986;90(1):1–12. doi: 10.1007/BF01869680. [DOI] [PubMed] [Google Scholar]
  16. Halevy J., Budinger M. E., Hayslett J. P., Binder H. J. Role of aldosterone in the regulation of sodium and chloride transport in the distal colon of sodium-depleted rats. Gastroenterology. 1986 Nov;91(5):1227–1233. doi: 10.1016/s0016-5085(86)80021-x. [DOI] [PubMed] [Google Scholar]
  17. Hatch M., Freel R. W., Goldner A. M., Earnest D. L. Oxalate and chloride absorption by the rabbit colon: sensitivity to metabolic and anion transport inhibitors. Gut. 1984 Mar;25(3):232–237. doi: 10.1136/gut.25.3.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones B., Simpson D. P. Influence of alterations in acid-base conditions on intracellular pH of intact renal cortex. Ren Physiol. 1983;6(1):28–35. doi: 10.1159/000172878. [DOI] [PubMed] [Google Scholar]
  19. Jorkasky D., Cox M., Feldman G. M. Differential effects of corticosteroids on Na+ transport in rat distal colon in vitro. Am J Physiol. 1985 Apr;248(4 Pt 1):G424–G431. doi: 10.1152/ajpgi.1985.248.4.G424. [DOI] [PubMed] [Google Scholar]
  20. Kinsella J. L., Aronson P. S. Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1981 Oct;241(4):F374–F379. doi: 10.1152/ajprenal.1981.241.4.F374. [DOI] [PubMed] [Google Scholar]
  21. Knickelbein R., Aronson P. S., Schron C. M., Seifter J., Dobbins J. W. Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl-HCO3 exchange and mechanism of coupling. Am J Physiol. 1985 Aug;249(2 Pt 1):G236–G245. doi: 10.1152/ajpgi.1985.249.2.G236. [DOI] [PubMed] [Google Scholar]
  22. Kurtin P., Charney A. N. Effect of arterial carbon dioxide tension on amiloride-sensitive sodium absorption in the colon. Am J Physiol. 1984 Nov;247(5 Pt 1):G537–G541. doi: 10.1152/ajpgi.1984.247.5.G537. [DOI] [PubMed] [Google Scholar]
  23. Langridge-Smith J. E., Field M. Sulfate transport in rabbit ileum: characterization of the serosal border anion exchange process. J Membr Biol. 1981;63(3):207–214. doi: 10.1007/BF01870982. [DOI] [PubMed] [Google Scholar]
  24. Maren T. H. Use of inhibitors in physiological studies of carbonic anhydrase. Am J Physiol. 1977 Apr;232(4):F291–F297. doi: 10.1152/ajprenal.1977.232.4.F291. [DOI] [PubMed] [Google Scholar]
  25. Nellans H. N., Frizzell R. A., Schultz S. G. Effect of acetazolamide on sodium and chloride transport by in vitro rabbit ileum. Am J Physiol. 1975 Jun;228(6):1808–1814. doi: 10.1152/ajplegacy.1975.228.6.1808. [DOI] [PubMed] [Google Scholar]
  26. Phillips S. F., Schmalz P. F. Bicarbonate secretion by the rat colon: effect of intraluminal chloride and acetazolamide. Proc Soc Exp Biol Med. 1970 Oct;135(1):116–122. doi: 10.3181/00379727-135-35001. [DOI] [PubMed] [Google Scholar]
  27. Turnheim K., Frizzell R. A., Schultz S. G. Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon. J Membr Biol. 1978 Mar 10;39(2-3):233–256. doi: 10.1007/BF01870333. [DOI] [PubMed] [Google Scholar]
  28. Wagner J. D., Kurtin P., Charney A. N. Effect of systemic acid-base disorders on colonic intracellular pH and ion transport. Am J Physiol. 1985 Jul;249(1 Pt 1):G39–G47. doi: 10.1152/ajpgi.1985.249.1.G39. [DOI] [PubMed] [Google Scholar]
  29. Will P. C., Lebowitz J. L., Hopfer U. Induction of amiloride-sensitive sodium transport in the rat colon by mineralocorticoids. Am J Physiol. 1980 Apr;238(4):F261–F268. doi: 10.1152/ajprenal.1980.238.4.F261. [DOI] [PubMed] [Google Scholar]
  30. Yau W. M., Makhlouf G. M. Comparison of transport mechanisms in isolated ascending and descending rat colon. Am J Physiol. 1975 Jan;228(1):191–195. doi: 10.1152/ajplegacy.1975.228.1.191. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES