Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jul 5;91(14):6683–6687. doi: 10.1073/pnas.91.14.6683

Alternative splicing generates secretory isoforms of human CD1.

A Woolfson 1, C Milstein 1
PMCID: PMC44267  PMID: 7517559

Abstract

Human CD1 genes are a family of five non-polymorphic genes that, although homologous to both class I and II major histocompatibility complex genes, map to chromosome 1. Only three of the antigens, CD1a, -b, and -c, have been clustered with monoclonal antibodies. They are noncovalently associated with beta 2-microglobulin and may function as nonclassical antigen-presenting molecules. Here we analyze their expression in mouse myeloma transfectants and human thymocytes and find mRNA splicing complexity. This manifests itself as incomplete splicing, alternative splicing, utilization of cryptic splice sites, and the generation of alternative reading frames. In the case of CD1A transfectants, we demonstrate that the major protein product is secreted and show by amino acid sequence analysis that this is derived from an unspliced transcript. A second major CD1a component appears to be retained intracellularly. The production of alternatively spliced transcripts in the thymus is not a feature of all CD1 genes. Although in the case of CD1A only the transcript encoding the cell surface CD1a isoform is found, CD1C and -E produce complex intrathymic splicing patterns. The CD1C transcripts predict the expression of a secreted CD1c isoform in the human thymus, which we detect in CD1C transfectant culture supernatants. CD1 gene expression is thus characterized by considerable splicing complexity, and the difference between the splicing patterns found in different environments suggests that this is tissue specific.

Full text

PDF
6683

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertson D. G., Fishpool R., Sherrington P., Nacheva E., Milstein C. Sensitive and high resolution in situ hybridization to human chromosomes using biotin labelled probes: assignment of the human thymocyte CD1 antigen genes to chromosome 1. EMBO J. 1988 Sep;7(9):2801–2805. doi: 10.1002/j.1460-2075.1988.tb03135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balk S. P., Ebert E. C., Blumenthal R. L., McDermott F. V., Wucherpfennig K. W., Landau S. B., Blumberg R. S. Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science. 1991 Sep 20;253(5026):1411–1415. doi: 10.1126/science.1716785. [DOI] [PubMed] [Google Scholar]
  3. Bilsland C. A., Milstein C. The identification of the beta 2-microglobulin binding antigen encoded by the human CD1D gene. Eur J Immunol. 1991 Jan;21(1):71–78. doi: 10.1002/eji.1830210112. [DOI] [PubMed] [Google Scholar]
  4. Blumberg R. S., Terhorst C., Bleicher P., McDermott F. V., Allan C. H., Landau S. B., Trier J. S., Balk S. P. Expression of a nonpolymorphic MHC class I-like molecule, CD1D, by human intestinal epithelial cells. J Immunol. 1991 Oct 15;147(8):2518–2524. [PubMed] [Google Scholar]
  5. Bradbury A., Calabi F., Milstein C. Expression of CD1 in the mouse thymus. Eur J Immunol. 1990 Aug;20(8):1831–1836. doi: 10.1002/eji.1830200830. [DOI] [PubMed] [Google Scholar]
  6. Briata P., Radka S. F., Sartoris S., Lee J. S. Alternative splicing of HLA-DQB transcripts and secretion of HLA-DQ beta-chain proteins: allelic polymorphism in splicing and polyadenylylation sites. Proc Natl Acad Sci U S A. 1989 Feb;86(3):1003–1007. doi: 10.1073/pnas.86.3.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burrone O. R., Calabi F., Kefford R. F., Milstein C. Somatic variants of the level of expression of a cell surface antigen. EMBO J. 1983;2(9):1591–1595. doi: 10.1002/j.1460-2075.1983.tb01629.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Calabi F., Burrone O., Milstein C. Is beta t a component of HLA-A,B,C in thymus derived cells? Mol Biol Med. 1983 Sep;1(2):219–223. [PubMed] [Google Scholar]
  9. Calabi F., Milstein C. A novel family of human major histocompatibility complex-related genes not mapping to chromosome 6. Nature. 1986 Oct 9;323(6088):540–543. doi: 10.1038/323540a0. [DOI] [PubMed] [Google Scholar]
  10. Caras I. W., Davitz M. A., Rhee L., Weddell G., Martin D. W., Jr, Nussenzweig V. Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature. 1987 Feb 5;325(6104):545–549. doi: 10.1038/325545a0. [DOI] [PubMed] [Google Scholar]
  11. Clark M. R., Milstein C. Expression of spleen cell immunoglobulin phenotype in hybrids with myeloma cell lines. Somatic Cell Genet. 1981 Nov;7(6):657–666. doi: 10.1007/BF01538755. [DOI] [PubMed] [Google Scholar]
  12. Faure F., Jitsukawa S., Miossec C., Hercend T. CD1c as a target recognition structure for human T lymphocytes: analysis with peripheral blood gamma/delta cells. Eur J Immunol. 1990 Mar;20(3):703–706. doi: 10.1002/eji.1830200336. [DOI] [PubMed] [Google Scholar]
  13. Knowles R. W., Bodmer W. F. A monoclonal antibody recognizing a human thymus leukemia-like antigen associated with beta 2-microglobulin. Eur J Immunol. 1982 Aug;12(8):676–681. doi: 10.1002/eji.1830120810. [DOI] [PubMed] [Google Scholar]
  14. Krangel M. S. Secretion of HLA-A and -B antigens via an alternative RNA splicing pathway. J Exp Med. 1986 May 1;163(5):1173–1190. doi: 10.1084/jem.163.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martin L. H., Calabi F., Lefebvre F. A., Bilsland C. A., Milstein C. Structure and expression of the human thymocyte antigens CD1a, CD1b, and CD1c. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9189–9193. doi: 10.1073/pnas.84.24.9189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martin L. H., Calabi F., Milstein C. Isolation of CD1 genes: a family of major histocompatibility complex-related differentiation antigens. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9154–9158. doi: 10.1073/pnas.83.23.9154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McMichael A. J., Pilch J. R., Galfré G., Mason D. Y., Fabre J. W., Milstein C. A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody. Eur J Immunol. 1979 Mar;9(3):205–210. doi: 10.1002/eji.1830090307. [DOI] [PubMed] [Google Scholar]
  18. Minowada J., Onuma T., Moore G. E. Rosette-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. J Natl Cancer Inst. 1972 Sep;49(3):891–895. [PubMed] [Google Scholar]
  19. Norment A. M., Lonberg N., Lacy E., Littman D. R. Alternatively spliced mRNA encodes a secreted form of human CD8 alpha. Characterization of the human CD8 alpha gene. J Immunol. 1989 May 1;142(9):3312–3319. [PubMed] [Google Scholar]
  20. Pannell R., Milstein C. An oscillating bubble chamber for laboratory scale production of monoclonal antibodies as an alternative to ascitic tumours. J Immunol Methods. 1992 Jan 21;146(1):43–48. doi: 10.1016/0022-1759(92)90046-v. [DOI] [PubMed] [Google Scholar]
  21. Pink J. R., Buttery S. H., De Vries G. M., Milstein C. Human immunoglobulin subclasses. Partial amino acid sequence of the constant region of a gamma 4 chain. Biochem J. 1970 Mar;117(1):33–47. doi: 10.1042/bj1170033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Porcelli S., Brenner M. B., Greenstein J. L., Balk S. P., Terhorst C., Bleicher P. A. Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature. 1989 Oct 5;341(6241):447–450. doi: 10.1038/341447a0. [DOI] [PubMed] [Google Scholar]
  23. Porcelli S., Morita C. T., Brenner M. B. CD1b restricts the response of human CD4-8- T lymphocytes to a microbial antigen. Nature. 1992 Dec 10;360(6404):593–597. doi: 10.1038/360593a0. [DOI] [PubMed] [Google Scholar]
  24. Potter H., Weir L., Leder P. Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7161–7165. doi: 10.1073/pnas.81.22.7161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Valetti C., Grossi C. E., Milstein C., Sitia R. Russell bodies: a general response of secretory cells to synthesis of a mutant immunoglobulin which can neither exit from, nor be degraded in, the endoplasmic reticulum. J Cell Biol. 1991 Nov;115(4):983–994. doi: 10.1083/jcb.115.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES