Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Oct;82(4):1376–1382. doi: 10.1172/JCI113741

Botulinum C2 toxin ADP-ribosylates actin and enhances O2- production and secretion but inhibits migration of activated human neutrophils.

J Norgauer 1, E Kownatzki 1, R Seifert 1, K Aktories 1
PMCID: PMC442694  PMID: 2844854

Abstract

The binary botulinum C2 toxin ADP-ribosylated the actin of human neutrophils. Treatment of human neutrophils with botulinum C2 toxin for 45 min increased FMLP-stimulated superoxide anion (O2-) production 1.5-5-fold, whereas only a minor fraction of the cellular actin pool (approximately 20%) was ADP-ribosylated. Effects of botulinum C2 toxin depended on toxin concentrations, presence of both components of the toxin, and incubation time. Cytochalasin B similarly enhanced O2- production. The effects of botulinum C2 toxin and cytochalasin B were additive at submaximally, but not maximally effective concentrations and incubation time of either toxin. Botulinum C2 toxin also enhanced stimulation of O2- production by Con A and platelet-activating factor, but not by phorbol 12-myristate 13-acetate (PMA). Botulinum C2 toxin increased FMLP-induced release of N-acetyl-glucosaminidase by 100-250%; release of vitamin B12-binding protein induced by FMLP and PMA was enhanced by approximately 150 and 50%, respectively. Botulinum C2 toxin blocked both random migration of neutrophils and migration induced by FMLP, complement C5a, leukotriene B4, and a novel monocyte-derived chemotactic agent. The data suggest that botulinum C2 toxin-catalyzed ADP-ribosylation of a minor actin pool has a pronounced effect on the activation of human neutrophils by various stimulants.

Full text

PDF
1376

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Ankenbauer T., Schering B., Jakobs K. H. ADP-ribosylation of platelet actin by botulinum C2 toxin. Eur J Biochem. 1986 Nov 17;161(1):155–162. doi: 10.1111/j.1432-1033.1986.tb10136.x. [DOI] [PubMed] [Google Scholar]
  2. Aktories K., Bärmann M., Ohishi I., Tsuyama S., Jakobs K. H., Habermann E. Botulinum C2 toxin ADP-ribosylates actin. Nature. 1986 Jul 24;322(6077):390–392. doi: 10.1038/322390a0. [DOI] [PubMed] [Google Scholar]
  3. Al-Mohanna F. A., Hallett M. B. Actin polymerization modifies stimulus-oxidase coupling in rat neutrophils. Biochim Biophys Acta. 1987 Mar 11;927(3):366–371. doi: 10.1016/0167-4889(87)90101-7. [DOI] [PubMed] [Google Scholar]
  4. Al-Mohanna F. A., Ohishi I., Hallett M. B. Botulinum C2 toxin potentiates activation of the neutrophil oxidase. Further evidence of a role for actin polymerization. FEBS Lett. 1987 Jul 13;219(1):40–44. doi: 10.1016/0014-5793(87)81187-0. [DOI] [PubMed] [Google Scholar]
  5. Bennett J. P., Cockcroft S., Gomperts B. D. Use of cytochalasin B to distinguish between early and late events in neutrophil activation. Biochim Biophys Acta. 1980 Oct 2;601(3):584–591. doi: 10.1016/0005-2736(80)90560-x. [DOI] [PubMed] [Google Scholar]
  6. Burgoyne R. D., Cheek T. R. Reorganisation of peripheral actin filaments as a prelude to exocytosis. Biosci Rep. 1987 Apr;7(4):281–288. doi: 10.1007/BF01121449. [DOI] [PubMed] [Google Scholar]
  7. Böttinger H., Reuner K. H., Aktories K. Inhibition of histamine release from rat mast cells by botulinum C2 toxin. Int Arch Allergy Appl Immunol. 1987;84(4):380–384. doi: 10.1159/000234453. [DOI] [PubMed] [Google Scholar]
  8. Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fehr J., Moser R., Leppert D., Groscurth P. Antiadhesive properties of biological surfaces are protective against stimulated granulocytes. J Clin Invest. 1985 Aug;76(2):535–542. doi: 10.1172/JCI112003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ingraham L. M., Coates T. D., Allen J. M., Higgins C. P., Baehner R. L., Boxer L. A. Metabolic, membrane, and functional responses of human polymorphonuclear leukocytes to platelet-activating factor. Blood. 1982 Jun;59(6):1259–1266. [PubMed] [Google Scholar]
  11. Jennings L. K., Fox J. E., Edwards H. H., Phillips D. R. Changes in the cytoskeletal structure of human platelets following thrombin activation. J Biol Chem. 1981 Jul 10;256(13):6927–6932. [PubMed] [Google Scholar]
  12. Jesaitis A. J., Tolley J. O., Allen R. A. Receptor-cytoskeleton interactions and membrane traffic may regulate chemoattractant-induced superoxide production in human granulocytes. J Biol Chem. 1986 Oct 15;261(29):13662–13669. [PubMed] [Google Scholar]
  13. Jesaitis A. J., Tolley J. O., Painter R. G., Sklar L. A., Cochrane C. G. Membrane-cytoskeleton interactions and the regulation of chemotactic peptide-induced activation of human granulocytes: the effects of dihydrocytochalasin B. J Cell Biochem. 1985;27(3):241–253. doi: 10.1002/jcb.240270306. [DOI] [PubMed] [Google Scholar]
  14. Kownatzki E., Kapp A., Uhrich S. Novel neutrophil chemotactic factor derived from human peripheral blood mononuclear leucocytes. Clin Exp Immunol. 1986 Apr;64(1):214–222. [PMC free article] [PubMed] [Google Scholar]
  15. Kownatzki E., Weil B., Uhrich S. The effects of bovine serum albumin and the chemotactic peptide formyl-methionyl-leucyl-phenylalanine on the adherence of guinea pig polymorphonuclear leukocytes to nylon fiber columns. Immunobiology. 1981;159(4-5):392–401. doi: 10.1016/s0171-2985(81)80095-2. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lad P. M., Olson C. V., Grewal I. S. Role of a pertussis toxin substrate in the control of lectin-induced cap formation in human neutrophils. Biochem J. 1986 Aug 15;238(1):29–36. doi: 10.1042/bj2380029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Markert M., Andrews P. C., Babior B. M. Measurement of O2- production by human neutrophils. The preparation and assay of NADPH oxidase-containing particles from human neutrophils. Methods Enzymol. 1984;105:358–365. doi: 10.1016/s0076-6879(84)05048-5. [DOI] [PubMed] [Google Scholar]
  19. O'Flaherty J. T., Schmitt J. D., Wykle R. L., Redman J. F., Jr, McCall C. E. Diacylglycerols and mezerein activate neutrophils by a phorbol myristate acetate-like mechanism. J Cell Physiol. 1985 Nov;125(2):192–199. doi: 10.1002/jcp.1041250204. [DOI] [PubMed] [Google Scholar]
  20. Ohishi I., Iwasaki M., Sakaguchi G. Purification and characterization of two components of botulinum C2 toxin. Infect Immun. 1980 Dec;30(3):668–673. doi: 10.1128/iai.30.3.668-673.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Omann G. M., Allen R. A., Bokoch G. M., Painter R. G., Traynor A. E., Sklar L. A. Signal transduction and cytoskeletal activation in the neutrophil. Physiol Rev. 1987 Jan;67(1):285–322. doi: 10.1152/physrev.1987.67.1.285. [DOI] [PubMed] [Google Scholar]
  22. Reuner K. H., Presek P., Boschek C. B., Aktories K. Botulinum C2 toxin ADP-ribosylates actin and disorganizes the microfilament network in intact cells. Eur J Cell Biol. 1987 Feb;43(1):134–140. [PubMed] [Google Scholar]
  23. Rider L. G., Niedel J. E. Diacylglycerol accumulation and superoxide anion production in stimulated human neutrophils. J Biol Chem. 1987 Apr 25;262(12):5603–5608. [PubMed] [Google Scholar]
  24. Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65–89. doi: 10.1016/0304-4173(86)90005-4. [DOI] [PubMed] [Google Scholar]
  25. Singer S. J., Kupfer A. The directed migration of eukaryotic cells. Annu Rev Cell Biol. 1986;2:337–365. doi: 10.1146/annurev.cb.02.110186.002005. [DOI] [PubMed] [Google Scholar]
  26. Sklar L. A., Omann G. M., Painter R. G. Relationship of actin polymerization and depolymerization to light scattering in human neutrophils: dependence on receptor occupancy and intracellular Ca++. J Cell Biol. 1985 Sep;101(3):1161–1166. doi: 10.1083/jcb.101.3.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vandekerckhove J., Schering B., Bärmann M., Aktories K. Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett. 1987 Dec 10;225(1-2):48–52. doi: 10.1016/0014-5793(87)81129-8. [DOI] [PubMed] [Google Scholar]
  28. White J. R., Naccache P. H., Sha'afi R. I. Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils. Effects of calcium and cytochalasin B. J Biol Chem. 1983 Nov 25;258(22):14041–14047. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES