Abstract
The cellular mechanism of the vasodilatory action of atriopeptin III (APIII) on vasopressin (AVP)-induced Ca2+ mobilization and cell shape change in cultured vascular smooth muscle cells (VSMC) was studied. APIII (10(-8) M) attenuated the increase of intracellular free Ca2+, [Ca2+]i, induced by 10(-8) M AVP (234.0 +/- 14.8 vs. 310.0 +/- 28.4 nM, P less than 0.01). Similar results were obtained in 45Ca2+ efflux experiments. APIII (10(-7) M), however, did not alter AVP-induced inositol trisphosphate (IP3) production, although the levels of inositol-1-phosphate were significantly reduced. The effect of APIII to block or attenuate AVP-induced Ca2+ mobilization was associated with an inhibition of AVP-stimulated cell shape change. The effect of atrial natriuretic factor (ANF) on cell shape, however, occurred at lower ANF concentrations than the effect on the Ca2+ mobilization. APIII stimulated production of cyclic guanosine monophosphate (cGMP) in VSMC. The effect of APIII on AVP-stimulated Ca2+ mobilization was partially mimicked by the stable nucleotide 8-bromo cGMP and was not affected by the soluble guanylate cyclase inhibitor, methylene blue (10(-4) M). These results suggest that APIII exerts its vasodilatory effect, in part, by interference with vasopressor-stimulated Ca2+ mobilization in vascular smooth muscle cells, perhaps by stimulating particulate guanylate cyclase and cGMP. However, an effect of ANF on the contractile mechanism at a site independent of Ca2+ release is also suggested by the present results.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ally A. I., Horrobin D. F., Manku M. S., Morgan R. O., Karmazyn M., Karmali R. A., Cunnane S. C. Dantrolene blocks intracellular calcium release in smooth muscle: competitive antagonism of thromboxane A2. Can J Physiol Pharmacol. 1978 Jun;56(3):520–523. doi: 10.1139/y78-080. [DOI] [PubMed] [Google Scholar]
- Ballerman B. J., Brenner B. M. Biologically active atrial peptides. J Clin Invest. 1985 Dec;76(6):2041–2048. doi: 10.1172/JCI112206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bianchi C., Gutkowska J., Thibault G., Garcia R., Genest J., Cantin M. Radioautographic localization of 125I-atrial natriuretic factor (ANF) in rat tissues. Histochemistry. 1985;82(5):441–452. doi: 10.1007/BF02450479. [DOI] [PubMed] [Google Scholar]
- Budzik G. P., Firestone S. L., Bush E. N., Connolly P. J., Rockway T. W., Sarin V. K., Holleman W. H. Divergence of ANF analogs in smooth muscle cell cGMP response and aorta vasorelaxation: evidence for receptor subtypes. Biochem Biophys Res Commun. 1987 Apr 14;144(1):422–431. doi: 10.1016/s0006-291x(87)80527-2. [DOI] [PubMed] [Google Scholar]
- Camargo M. J., Kleinert H. D., Atlas S. A., Sealey J. E., Laragh J. H., Maack T. Ca-dependent hemodynamic and natriuretic effects of atrial extract in isolated rat kidney. Am J Physiol. 1984 Apr;246(4 Pt 2):F447–F456. doi: 10.1152/ajprenal.1984.246.4.F447. [DOI] [PubMed] [Google Scholar]
- Capponi A. M., Lew P. D., Wüthrich R., Vallotton M. B. Effects of atrial natriuretic peptide on the stimulation by angiotensin II of various target cells. J Hypertens Suppl. 1986 Jun;4(2):S61–S65. [PubMed] [Google Scholar]
- Chamley-Campbell J., Campbell G. R., Ross R. The smooth muscle cell in culture. Physiol Rev. 1979 Jan;59(1):1–61. doi: 10.1152/physrev.1979.59.1.1. [DOI] [PubMed] [Google Scholar]
- Chamley J. H., Campbell G. R., McConnell J. D., Gröschel-Stewart U. Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tissue Res. 1977 Feb 14;177(4):503–522. doi: 10.1007/BF00220611. [DOI] [PubMed] [Google Scholar]
- Chiu P. J., Tetzloff G., Sybertz E. J. The effects of atriopeptin II on calcium fluxes in rabbit aorta. Eur J Pharmacol. 1986 May 27;124(3):277–284. doi: 10.1016/0014-2999(86)90228-1. [DOI] [PubMed] [Google Scholar]
- Currie M. G., Geller D. M., Cole B. R., Boylan J. G., YuSheng W., Holmberg S. W., Needleman P. Bioactive cardiac substances: potent vasorelaxant activity in mammalian atria. Science. 1983 Jul 1;221(4605):71–73. doi: 10.1126/science.6857267. [DOI] [PubMed] [Google Scholar]
- Doyle V. M., Rüegg U. T. Vasopressin induced production of inositol trisphosphate and calcium efflux in a smooth muscle cell line. Biochem Biophys Res Commun. 1985 Aug 30;131(1):469–476. doi: 10.1016/0006-291x(85)91826-1. [DOI] [PubMed] [Google Scholar]
- Furukawa K., Nakamura H. Cyclic GMP regulation of the plasma membrane (Ca2+-Mg2+)ATPase in vascular smooth muscle. J Biochem. 1987 Jan;101(1):287–290. doi: 10.1093/oxfordjournals.jbchem.a121904. [DOI] [PubMed] [Google Scholar]
- Garcia R., Thibault G., Cantin M., Genest J. Effect of a purified atrial natriuretic factor on rat and rabbit vascular strips and vascular beds. Am J Physiol. 1984 Jul;247(1 Pt 2):R34–R39. doi: 10.1152/ajpregu.1984.247.1.R34. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hirata Y., Tomita M., Yoshimi H., Ikeda M. Specific receptors for atrial natriuretic factor (ANF) in cultured vascular smooth muscle cells of rat aorta. Biochem Biophys Res Commun. 1984 Dec 14;125(2):562–568. doi: 10.1016/0006-291x(84)90576-x. [DOI] [PubMed] [Google Scholar]
- Knorr M., Locher R., Stimpel M., Edmonds D., Vetter W. Effect of atrial natriuretic polypeptide on angiotensin II-induced increase of cytosolic free calcium in cultured smooth muscle cells. J Hypertens Suppl. 1986 Jun;4(2):S67–S69. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lincoln T. M. Effects of nitroprusside and 8-bromo-cyclic GMP on the contractile activity of the rat aorta. J Pharmacol Exp Ther. 1983 Jan;224(1):100–107. [PubMed] [Google Scholar]
- Maack T., Camargo M. J., Kleinert H. D., Laragh J. H., Atlas S. A. Atrial natriuretic factor: structure and functional properties. Kidney Int. 1985 Apr;27(4):607–615. doi: 10.1038/ki.1985.54. [DOI] [PubMed] [Google Scholar]
- Moolenaar W. H., Tertoolen L. G., de Laat S. W. Growth factors immediately raise cytoplasmic free Ca2+ in human fibroblasts. J Biol Chem. 1984 Jul 10;259(13):8066–8069. [PubMed] [Google Scholar]
- Murad F., Rapoport R. M., Fiscus R. Role of cyclic-GMP in relaxations of vascular smooth muscle. J Cardiovasc Pharmacol. 1985;7 (Suppl 3):S111–S118. [PubMed] [Google Scholar]
- Nabika T., Velletri P. A., Lovenberg W., Beaven M. A. Increase in cytosolic calcium and phosphoinositide metabolism induced by angiotensin II and [Arg]vasopressin in vascular smooth muscle cells. J Biol Chem. 1985 Apr 25;260(8):4661–4670. [PubMed] [Google Scholar]
- Napier M. A., Vandlen R. L., Albers-Schönberg G., Nutt R. F., Brady S., Lyle T., Winquist R., Faison E. P., Heinel L. A., Blaine E. H. Specific membrane receptors for atrial natriuretic factor in renal and vascular tissues. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5946–5950. doi: 10.1073/pnas.81.19.5946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needleman P., Adams S. P., Cole B. R., Currie M. G., Geller D. M., Michener M. L., Saper C. B., Schwartz D., Standaert D. G. Atriopeptins as cardiac hormones. Hypertension. 1985 Jul-Aug;7(4):469–482. doi: 10.1161/01.hyp.7.4.469. [DOI] [PubMed] [Google Scholar]
- Ohlstein E. H., Berkowitz B. A. Cyclic guanosine monophosphate mediates vascular relaxation induced by atrial natriuretic factor. Hypertension. 1985 Mar-Apr;7(2):306–310. doi: 10.1161/01.hyp.7.2.306. [DOI] [PubMed] [Google Scholar]
- Oshima T., Currie M. G., Geller D. M., Needleman P. An atrial peptide is a potent renal vasodilator substance. Circ Res. 1984 May;54(5):612–616. doi: 10.1161/01.res.54.5.612. [DOI] [PubMed] [Google Scholar]
- Rapoport R. M. Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ Res. 1986 Mar;58(3):407–410. doi: 10.1161/01.res.58.3.407. [DOI] [PubMed] [Google Scholar]
- Rhodes D., Prpić V., Exton J. H., Blackmore P. F. Stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in hepatocytes by vasopressin. J Biol Chem. 1983 Mar 10;258(5):2770–2773. [PubMed] [Google Scholar]
- Schiffrin E. L., Chartier L., Thibault G., St-Louis J., Cantin M., Genest J. Vascular and adrenal receptors for atrial natriuretic factor in the rat. Circ Res. 1985 Jun;56(6):801–807. doi: 10.1161/01.res.56.6.801. [DOI] [PubMed] [Google Scholar]
- Sengupta C., Meyer U. A., Carafoli E. Binding of dantrolene sodium to muscle intracellular membranes. FEBS Lett. 1980 Aug 11;117(1):37–38. doi: 10.1016/0014-5793(80)80908-2. [DOI] [PubMed] [Google Scholar]
- Smith J. B., Lincoln T. M. Angiotensin decreases cyclic GMP accumulation produced by atrial natriuretic factor. Am J Physiol. 1987 Jul;253(1 Pt 1):C147–C150. doi: 10.1152/ajpcell.1987.253.1.C147. [DOI] [PubMed] [Google Scholar]
- Smith J. B., Smith L., Higgins B. L. Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells. J Biol Chem. 1985 Nov 25;260(27):14413–14416. [PubMed] [Google Scholar]
- Stokes T. J., Jr, McConkey C. L., Jr, Martin K. J. Atriopeptin III increases cGMP in glomeruli but not in proximal tubules of dog kidney. Am J Physiol. 1986 Jan;250(1 Pt 2):F27–F31. doi: 10.1152/ajprenal.1986.250.1.F27. [DOI] [PubMed] [Google Scholar]
- Takeda K., Meyer-Lehnert H., Kim J. K., Schrier R. W. Effect of angiotensin II on Ca2+ kinetics and contraction in cultured rat glomerular mesangial cells. Am J Physiol. 1988 Feb;254(2 Pt 2):F254–F266. doi: 10.1152/ajprenal.1988.254.2.F254. [DOI] [PubMed] [Google Scholar]
- Takuwa Y., Rasmussen H. Measurement of cytoplasmic free Ca2+ concentration in rabbit aorta using the photoprotein, aequorin. Effect of atrial natriuretic peptide on agonist-induced Ca2+ signal generation. J Clin Invest. 1987 Jul;80(1):248–257. doi: 10.1172/JCI113055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor C. J., Meisheri K. D. Inhibitory effects of a synthetic atrial peptide on contractions and 45Ca fluxes in vascular smooth muscle. J Pharmacol Exp Ther. 1986 Jun;237(3):803–808. [PubMed] [Google Scholar]
- Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakitani K., Cole B. R., Geller D. M., Currie M. G., Adams S. P., Fok K. F., Needleman P. Atriopeptins: correlation between renal vasodilation and natriuresis. Am J Physiol. 1985 Jul;249(1 Pt 2):F49–F53. doi: 10.1152/ajprenal.1985.249.1.F49. [DOI] [PubMed] [Google Scholar]
- Waldman S. A., Rapoport R. M., Murad F. Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem. 1984 Dec 10;259(23):14332–14334. [PubMed] [Google Scholar]
- Waldman S. A., Rapoport R. M., Murad F. Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem. 1984 Dec 10;259(23):14332–14334. [PubMed] [Google Scholar]
- Winquist R. J., Faison E. P., Waldman S. A., Schwartz K., Murad F., Rapoport R. M. Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7661–7664. doi: 10.1073/pnas.81.23.7661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winquist R. J. The relaxant effects of atrial natriuretic factor on vascular smooth muscle. Life Sci. 1985 Sep 23;37(12):1081–1087. doi: 10.1016/0024-3205(85)90351-0. [DOI] [PubMed] [Google Scholar]