Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Oct;82(4):1437–1444. doi: 10.1172/JCI113749

Inhibitory guanosine triphosphate-binding protein-mediated regulation of vasopressin action in isolated single medullary tubules of mouse kidney.

K Takaichi 1, K Kurokawa 1
PMCID: PMC442702  PMID: 2844857

Abstract

Vasopressin (AVP) plays a key role in maximal urine concentration by stimulating NaCl reabsorption in the medullary thick ascending limbs of Henle (MAL) and by increasing water permeability in the medullary collecting tubules (MCT). These effects of AVP in MAL and MCT are mediated by cAMP. Alpha 2-adrenergic stimulation in MCT, and high ambient Ca2+ and PGE2 in MAL inhibit AVP-dependent cAMP production and thereby modulate urine concentration. The present study was undertaken to clarify the mechanisms underlying the inhibition of AVP-dependent cAMP production by these agents using microdissected mouse MAL and MCT. Preincubation of MCT and MAL with 1 microgram/ml pertussis toxin for 3 and 6 h, respectively, resulted in ADP-ribosylation of an approximately 41-kD protein, which was presumably an alpha subunit of the inhibitory GTP-binding protein Gi. Epinephrine, 10(-6) M, via alpha 2-adrenergic stimulation, inhibited AVP-dependent cAMP production in MCT. Preincubation of MCT for 3 h with pertussis toxin abolished the inhibition of AVP-dependent cAMP production by epinephrine. High ambient Ca2+ and PGE2 both inhibited AVP-dependent cAMP production in MAL. Preincubation of MAL for 6 h with pertussis toxin abolished the inhibition by high ambient Ca2+ and attenuated the inhibition by PGE2. Preincubation of MCT or MAL with pertussis toxin for 1 h was ineffective in ADP-ribosylation and did not modify the inhibition of AVP-dependent cAMP production by these agents in both nephron segments. Our data suggest that the inhibition of AVP-dependent cAMP production by alpha 2-adrenergic stimulation in MCT, and by high ambient Ca2+ and adrenergic stimulation in MCT, and by high ambient Ca2+ and PGE2 in MAL, is mediated, at least in part, through activation of Gi.

Full text

PDF
1437

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arend L. J., Sonnenburg W. K., Smith W. L., Spielman W. S. A1 and A2 adenosine receptors in rabbit cortical collecting tubule cells. Modulation of hormone-stimulated cAMP. J Clin Invest. 1987 Mar;79(3):710–714. doi: 10.1172/JCI112875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cerione R. A., Staniszewski C., Caron M. G., Lefkowitz R. J., Codina J., Birnbaumer L. A role for Ni in the hormonal stimulation of adenylate cyclase. Nature. 1985 Nov 21;318(6043):293–295. doi: 10.1038/318293a0. [DOI] [PubMed] [Google Scholar]
  3. Chabardès D., Montégut M., Imbert-Teboul M., Morel F. Inhibition of alpha 2-adrenergic agonists on AVP-induced cAMP accumulation in isolated collecting tubule of the rat kidney. Mol Cell Endocrinol. 1984 Oct;37(3):263–275. doi: 10.1016/0303-7207(84)90096-0. [DOI] [PubMed] [Google Scholar]
  4. Culpepper R. M., Andreoli T. E. Interactions among prostaglandin E2, antidiuretic hormone, and cyclic adenosine monophosphate in modulating Cl- absorption in single mouse medullary thick ascending limbs of Henle. J Clin Invest. 1983 Jun;71(6):1588–1601. doi: 10.1172/JCI110915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grantham J. J., Burg M. B. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol. 1966 Jul;211(1):255–259. doi: 10.1152/ajplegacy.1966.211.1.255. [DOI] [PubMed] [Google Scholar]
  6. Grantham J. J., Orloff J. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3',5'-monophosphate, and theophylline. J Clin Invest. 1968 May;47(5):1154–1161. doi: 10.1172/JCI105804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hall D. A., Varney D. M. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle's loop. J Clin Invest. 1980 Oct;66(4):792–802. doi: 10.1172/JCI109917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hebert S. C., Culpepper R. M., Andreoli T. E. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am J Physiol. 1981 Oct;241(4):F412–F431. doi: 10.1152/ajprenal.1981.241.4.F412. [DOI] [PubMed] [Google Scholar]
  9. Jamison R. L., Maffly R. H. The urinary concentrating mechanism. N Engl J Med. 1976 Nov 4;295(19):1059–1067. doi: 10.1056/NEJM197611042951908. [DOI] [PubMed] [Google Scholar]
  10. Kim J. K., Summer S. N., Erickson A. E., Schrier R. W. Role of arginine vasopressin in medullary thick ascending limb on maximal urinary concentration. Am J Physiol. 1986 Aug;251(2 Pt 2):F266–F270. doi: 10.1152/ajprenal.1986.251.2.F266. [DOI] [PubMed] [Google Scholar]
  11. Krothapalli R. K., Suki W. N. Functional characterization of the alpha adrenergic receptor modulating the hydroosmotic effect of vasopressin on the rabbit cortical collecting tubule. J Clin Invest. 1984 Mar;73(3):740–749. doi: 10.1172/JCI111267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kurokawa K., Friedler R. M., Massry S. G. Renal action of cholera toxin: II. Effects on adenylate cyclase-cyclic AMP system. Kidney Int. 1975 Mar;7(3):137–144. doi: 10.1038/ki.1975.21. [DOI] [PubMed] [Google Scholar]
  13. Kurose H., Katada T., Amano T., Ui M. Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via alpha-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells. J Biol Chem. 1983 Apr 25;258(8):4870–4875. [PubMed] [Google Scholar]
  14. Marumo F., Edelman I. S. Effects of Ca++ and prostaglandin E1 on vasopressin activation of renal adenyl cyclase. J Clin Invest. 1971 Aug;50(8):1613–1620. doi: 10.1172/JCI106649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Michel T., Lefkowitz R. J. Hormonal inhibition of adenylate cyclase. alpha 2 Adrenergic receptors promote release of [3H]guanylylimidodiphosphate from platelet membranes. J Biol Chem. 1982 Nov 25;257(22):13557–13563. [PubMed] [Google Scholar]
  16. Morel F. Sites of hormone action in the mammalian nephron. Am J Physiol. 1981 Mar;240(3):F159–F164. doi: 10.1152/ajprenal.1981.240.3.F159. [DOI] [PubMed] [Google Scholar]
  17. Murayama T., Ui M. Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J Biol Chem. 1983 Mar 10;258(5):3319–3326. [PubMed] [Google Scholar]
  18. Nadler S. P., Hebert S. C., Brenner B. M. PGE2, forskolin, and cholera toxin interactions in rabbit cortical collecting tubule. Am J Physiol. 1986 Jan;250(1 Pt 2):F127–F135. doi: 10.1152/ajprenal.1986.250.1.F127. [DOI] [PubMed] [Google Scholar]
  19. Nemeth E. F., Scarpa A. Rapid mobilization of cellular Ca2+ in bovine parathyroid cells evoked by extracellular divalent cations. Evidence for a cell surface calcium receptor. J Biol Chem. 1987 Apr 15;262(11):5188–5196. [PubMed] [Google Scholar]
  20. Okajima F., Katada T., Ui M. Coupling of the guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet-activating protein, pertussis toxin. A possible role of the toxin substrate in Ca2+-mobilizing receptor-mediated signal transduction. J Biol Chem. 1985 Jun 10;260(11):6761–6768. [PubMed] [Google Scholar]
  21. Sasaki S., Imai M. Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle's loop of mouse, rat, and rabbit kidneys. Pflugers Arch. 1980 Feb;383(3):215–221. doi: 10.1007/BF00587521. [DOI] [PubMed] [Google Scholar]
  22. Takaichi K., Kurokawa K. High Ca2+ inhibits peptide hormone-dependent cAMP production specifically in thick ascending limbs of Henle. Miner Electrolyte Metab. 1986;12(5-6):342–346. [PubMed] [Google Scholar]
  23. Takaichi K., Uchida S., Kurokawa K. High Ca2+ inhibits AVP-dependent cAMP production in thick ascending limbs of Henle. Am J Physiol. 1986 May;250(5 Pt 2):F770–F776. doi: 10.1152/ajprenal.1986.250.5.F770. [DOI] [PubMed] [Google Scholar]
  24. Torikai S., Kurokawa K. Effect of PGE2 on vasopressin-dependent cell cAMP in isolated single nephron segments. Am J Physiol. 1983 Jul;245(1):F58–F66. doi: 10.1152/ajprenal.1983.245.1.F58. [DOI] [PubMed] [Google Scholar]
  25. Torikai S., Wang M. S., Klein K. L., Kurokawa K. Adenylate cyclase and cell cyclic AMP of rat cortical thick ascending limb of Henle. Kidney Int. 1981 Nov;20(5):649–654. doi: 10.1038/ki.1981.189. [DOI] [PubMed] [Google Scholar]
  26. Umemura S., Marver D., Smyth D. D., Pettinger W. A. Alpha2-adrenoceptors and cellular cAMP levels in single nephron segments from the rat. Am J Physiol. 1985 Jul;249(1 Pt 2):F28–F33. doi: 10.1152/ajprenal.1985.249.1.F28. [DOI] [PubMed] [Google Scholar]
  27. Watanabe T., Umegaki K., Smith W. L. Association of a solubilized prostaglandin E2 receptor from renal medulla with a pertussis toxin-reactive guanine nucleotide regulatory protein. J Biol Chem. 1986 Oct 15;261(29):13430–13437. [PubMed] [Google Scholar]
  28. Wolf F., Scarpa A. Calcium binding by parathyroid cell plasma membranes. Cell Calcium. 1987 Apr;8(2):171–183. doi: 10.1016/0143-4160(87)90053-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES