Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Oct;82(4):1462–1465. doi: 10.1172/JCI113752

Differential inhibitory effects of forskolin, isoproterenol, and dibutyryl cyclic adenosine monophosphate on phosphoinositide hydrolysis in canine tracheal smooth muscle.

J M Madison 1, J K Brown 1
PMCID: PMC442705  PMID: 2844859

Abstract

A characteristic feature of airway smooth muscle is its relative sensitivity to relaxant effects of beta adrenergic agonists when contracted by inflammatory mediators, such as histamine, vs. resistance to these relaxant effects when contracted by muscarinic agonists. Because contractions presumably depend upon the hydrolysis of membrane phosphoinositides (PI) and the generation of inositol phosphates (IP), our goal was to test for the effects of forskolin, isoproterenol, and dibutyryl cAMP on histamine- vs. methacholine-induced IP accumulation in canine tracheal smooth muscle. Methacholine (10(-3) M) was a more effective stimulant of IP accumulation (9.6 +/- 2.1-fold increase) than equimolar histamine (3.6 +/- 0.5-fold increase) in this tissue. When responses to equieffective methacholine (4 x 10(-6) M) and histamine (10(-3) M) were compared, neither forskolin, isoproterenol, nor dibutyryl cAMP significantly decreased IP accumulation in response to methacholine. In contrast, each of these three agents significantly decreased responses to histamine (by 56 +/- 9, 52 +/- 2, and 61 +/- 2%, respectively). We concluded that, in canine tracheal smooth muscle, increased cAMP is associated with inhibition of PI hydrolysis in response to histamine but not methacholine. The findings suggest a novel mechanism for selective modulation by cAMP of receptor-mediated cellular activation.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Latif A. A. Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev. 1986 Sep;38(3):227–272. [PubMed] [Google Scholar]
  2. Anderson W. H., Krzanowski J. J., Polson J. B., Szentivanyi A. The effect of prostaglandin E2 on histamine-stimulated calcium mobilization as a possible explanation for histamine tachyphylaxis in canine tracheal smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 1983 Feb;322(1):72–77. doi: 10.1007/BF00649355. [DOI] [PubMed] [Google Scholar]
  3. Baron C. B., Cunningham M., Strauss J. F., 3rd, Coburn R. F. Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6899–6903. doi: 10.1073/pnas.81.21.6899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J., Downes C. P., Hanley M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 1982 Sep 15;206(3):587–595. doi: 10.1042/bj2060587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berridge M. J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J. 1983 Jun 15;212(3):849–858. doi: 10.1042/bj2120849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colucci W. S. Adenosine 3',5'-cyclic-monophosphate-dependent regulation of alpha 1-adrenergic receptor number in rabbit aortic smooth muscle cells. Circ Res. 1986 Feb;58(2):292–297. doi: 10.1161/01.res.58.2.292. [DOI] [PubMed] [Google Scholar]
  7. Duncan R. A., Krzanowski J. J., Jr, Davis J. S., Polson J. B., Coffey R. G., Shimoda T., Szentivanyi A. Polyphosphoinositide metabolism in canine tracheal smooth muscle (CTSM) in response to a cholinergic stimulus. Biochem Pharmacol. 1987 Feb 1;36(3):307–310. doi: 10.1016/0006-2952(87)90286-3. [DOI] [PubMed] [Google Scholar]
  8. Grandordy B. M., Cuss F. M., Barnes P. J. Breakdown of phosphoinositides in airway smooth muscle: lack of influence of anti-asthmatic drugs. Life Sci. 1987 Sep 28;41(13):1621–1627. doi: 10.1016/0024-3205(87)90730-2. [DOI] [PubMed] [Google Scholar]
  9. Grandordy B. M., Cuss F. M., Sampson A. S., Palmer J. B., Barnes P. J. Phosphatidylinositol response to cholinergic agonists in airway smooth muscle: relationship to contraction and muscarinic receptor occupancy. J Pharmacol Exp Ther. 1986 Jul;238(1):273–279. [PubMed] [Google Scholar]
  10. Gunst S. J., Stropp J. Q., Flavahan N. A. Analysis of receptor reserves in canine tracheal smooth muscle. J Appl Physiol (1985) 1987 Apr;62(4):1755–1758. doi: 10.1152/jappl.1987.62.4.1755. [DOI] [PubMed] [Google Scholar]
  11. Hashimoto T., Hirata M., Ito Y. A role for inositol 1,4,5-trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle. Br J Pharmacol. 1985 Sep;86(1):191–199. doi: 10.1111/j.1476-5381.1985.tb09449.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jenne J. W., Shaughnessy T. K., Druz W. S., Manfredi C. J., Vestal R. E. In vivo functional antagonism between isoproterenol and bronchoconstrictants in the dog. J Appl Physiol (1985) 1987 Aug;63(2):812–819. doi: 10.1152/jappl.1987.63.2.812. [DOI] [PubMed] [Google Scholar]
  13. Jones C. A., Madison J. M., Tom-Moy M., Brown J. K. Muscarinic cholinergic inhibition of adenylate cyclase in airway smooth muscle. Am J Physiol. 1987 Jul;253(1 Pt 1):C97–104. doi: 10.1152/ajpcell.1987.253.1.C97. [DOI] [PubMed] [Google Scholar]
  14. Kaibuchi K., Takai Y., Ogawa Y., Kimura S., Nishizuka Y., Nakamura T., Tomomura A., Ichihara A. Inhibitory action of adenosine 3',5'-monophosphate on phosphatidylinositol turnover: difference in tissue response. Biochem Biophys Res Commun. 1982 Jan 15;104(1):105–112. doi: 10.1016/0006-291x(82)91946-5. [DOI] [PubMed] [Google Scholar]
  15. Kato H., Ishitoya J., Takenawa T. Inhibition of inositol phospholipids metabolism and calcium mobilization by cyclic AMP-increasing agents and phorbol ester in neutrophils. Biochem Biophys Res Commun. 1986 Sep 30;139(3):1272–1278. doi: 10.1016/s0006-291x(86)80315-1. [DOI] [PubMed] [Google Scholar]
  16. Lapetina E. G. Incorporation of synthetic 1,2-diacylglycerol into platelet phosphatidylinositol is increased by cyclic AMP. FEBS Lett. 1986 Jan 20;195(1-2):111–114. doi: 10.1016/0014-5793(86)80141-7. [DOI] [PubMed] [Google Scholar]
  17. Mackay D. An analysis of functional antagonism and synergism. Br J Pharmacol. 1981 May;73(1):127–134. doi: 10.1111/j.1476-5381.1981.tb16781.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McDonough P. M., Goldstein D., Brown J. H. Elevation of cytoplasmic calcium concentration stimulates hydrolysis of phosphatidylinositol bisphosphate in chick heart cells: effect of sodium channel activators. Mol Pharmacol. 1988 Mar;33(3):310–315. [PubMed] [Google Scholar]
  19. Monaco M. E. Calcium and the phosphoinositide cycle in WRK-1 cells. Effects of A23187 on metabolism of specific phosphatidylinositol pools. J Biol Chem. 1987 Jan 5;262(1):147–151. [PubMed] [Google Scholar]
  20. Russell J. A. Differential inhibitory effect of isoproterenol on contractions of canine airways. J Appl Physiol Respir Environ Exerc Physiol. 1984 Sep;57(3):801–807. doi: 10.1152/jappl.1984.57.3.801. [DOI] [PubMed] [Google Scholar]
  21. Takenawa T., Ishitoya J., Nagai Y. Inhibitory effect of prostaglandin E2, forskolin, and dibutyryl cAMP on arachidonic acid release and inositol phospholipid metabolism in guinea pig neutrophils. J Biol Chem. 1986 Jan 25;261(3):1092–1098. [PubMed] [Google Scholar]
  22. Takuwa Y., Takuwa N., Rasmussen H. Carbachol induces a rapid and sustained hydrolysis of polyphosphoinositide in bovine tracheal smooth muscle measurements of the mass of polyphosphoinositides, 1,2-diacylglycerol, and phosphatidic acid. J Biol Chem. 1986 Nov 5;261(31):14670–14675. [PubMed] [Google Scholar]
  23. Takuwa Y., Takuwa N., Rasmussen H. The effects of isoproterenol on intracellular calcium concentration. J Biol Chem. 1988 Jan 15;263(2):762–768. [PubMed] [Google Scholar]
  24. Torphy T. J. Differential relaxant effects of isoproterenol on methacholine- versus leukotriene D4-induced contraction in the guinea-pig trachea. Eur J Pharmacol. 1984 Jul 20;102(3-4):549–553. doi: 10.1016/0014-2999(84)90580-6. [DOI] [PubMed] [Google Scholar]
  25. Torphy T. J., Zheng C., Peterson S. M., Fiscus R. R., Rinard G. A., Mayer S. E. Inhibitory effect of methacholine on drug-induced relaxation, cyclic AMP accumulation, and cyclic AMP-dependent protein kinase activation in canine tracheal smooth muscle. J Pharmacol Exp Ther. 1985 May;233(2):409–417. [PubMed] [Google Scholar]
  26. Triner L., Vulliemoz Y., Verosky M. Cyclic 3',5'-adenosine monophosphate and bronchial tone. Eur J Pharmacol. 1977 Jan 7;41(1):37–46. doi: 10.1016/0014-2999(77)90368-5. [DOI] [PubMed] [Google Scholar]
  27. Watson S. P., McConnell R. T., Lapetina E. G. The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J Biol Chem. 1984 Nov 10;259(21):13199–13203. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES