Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Nov;82(5):1510–1515. doi: 10.1172/JCI113759

Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate.

S M Sadrzadeh 1, J W Eaton 1
PMCID: PMC442716  PMID: 2846656

Abstract

Hemorrhage within the central nervous system (CNS) may be associated with subsequent development of seizure states or paralysis. Prior investigations indicate that hemoglobin, released from extravasated erythrocytes, may be toxic to the CNS by promoting peroxidation of lipids and inhibition of Na,K-ATPase. These deleterious effects are blocked both in vitro and in vivo by the Fe3+ chelator, desferrioxamine, indicating the involvement of free iron derived from hemoglobin. We now report that the Fe2+ chelator, ferene, also inhibits methemoglobin- and ferric iron-mediated CNS lipid oxidation, reflecting the reduction of Fe3+ by some component of the CNS. This reduction is apparent in the accumulation of the highly chromophoric ferene: Fe2+ chelate after the addition of Fe3+ salts to supernatants of murine brain homogenates. Because large amounts of ascorbic acid occur in mammalian CNS, we suspected that this reducing substance might be responsible. Indeed, the peroxidative effects of hemoglobin and iron on murine brain are blocked by washing of CNS membranes or by preincubation of crude homogenates with ascorbate oxidase. Furthermore, the addition of ascorbate to washed CNS membranes fully restores hemoglobin/iron-driven peroxidation. We conclude that posthemorrhagic CNS dysfunction may stem from damaging redox reactions between hemoglobin iron, ascorbic acid, and oxidizable components of the nervous system.

Full text

PDF
1510

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artiss J. D., Vinogradov S., Zak B. Spectrophotometric study of several sensitive reagents for serum iron. Clin Biochem. 1981 Dec;14(6):311–315. doi: 10.1016/s0009-9120(81)91065-1. [DOI] [PubMed] [Google Scholar]
  2. Barber A. A. Lipid peroxidation in rat tissue homogenates: Interaction of iron and ascorbic acid as the normal catalytic mechanism. Lipids. 1966 Mar;1(2):146–151. doi: 10.1007/BF02533008. [DOI] [PubMed] [Google Scholar]
  3. Barksdale A. D., Hedlund B. E., Hallaway B. E., Benson E. S., Rosenberg A. The binding of azide to human methemoglobin A0. Error analysis for the interpolative and noninterpolative methods. Biochemistry. 1975 Jun 17;14(12):2695–2699. doi: 10.1021/bi00683a021. [DOI] [PubMed] [Google Scholar]
  4. Bodannes R. S., Chan P. C. Ascorbic acid as a scavenger of singlet oxygen. FEBS Lett. 1979 Sep 15;105(2):195–196. doi: 10.1016/0014-5793(79)80609-2. [DOI] [PubMed] [Google Scholar]
  5. Braughler J. M., Duncan L. A., Chase R. L. The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J Biol Chem. 1986 Aug 5;261(22):10282–10289. [PubMed] [Google Scholar]
  6. Bucher J. R., Tien M., Aust S. D. The requirement for ferric in the initiation of lipid peroxidation by chelated ferrous iron. Biochem Biophys Res Commun. 1983 Mar 29;111(3):777–784. doi: 10.1016/0006-291x(83)91366-9. [DOI] [PubMed] [Google Scholar]
  7. Bucher J. R., Tien M., Morehouse L. A., Aust S. D. Redox cycling and lipid peroxidation: the central role of iron chelates. Fundam Appl Toxicol. 1983 Jul-Aug;3(4):222–226. doi: 10.1016/s0272-0590(83)80130-4. [DOI] [PubMed] [Google Scholar]
  8. Buege J. A., Aust S. D. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310. doi: 10.1016/s0076-6879(78)52032-6. [DOI] [PubMed] [Google Scholar]
  9. Day B. R., Williams D. R., Marsh C. A. A rapid manual method for routine assay of ascorbic acid in serum and plasma. Clin Biochem. 1979 Feb;12(1):22–26. doi: 10.1016/s0009-9120(79)90040-7. [DOI] [PubMed] [Google Scholar]
  10. Hebbel R. P., Morgan W. T., Eaton J. W., Hedlund B. E. Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc Natl Acad Sci U S A. 1988 Jan;85(1):237–241. doi: 10.1073/pnas.85.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hornig D. Distribution of ascorbic acid, metabolites and analogues in man and animals. Ann N Y Acad Sci. 1975 Sep 30;258:103–118. doi: 10.1111/j.1749-6632.1975.tb29271.x. [DOI] [PubMed] [Google Scholar]
  12. Means E. D., Anderson D. K. Neuronophagia by leukocytes in experimental spinal cord injury. J Neuropathol Exp Neurol. 1983 Nov;42(6):707–719. doi: 10.1097/00005072-198311000-00009. [DOI] [PubMed] [Google Scholar]
  13. Minotti G., Aust S. D. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem. 1987 Jan 25;262(3):1098–1104. [PubMed] [Google Scholar]
  14. Panter S. S., Sadrzadeh S. M., Hallaway P. E., Haines J. L., Anderson V. E., Eaton J. W. Hypohaptoglobinemia associated with familial epilepsy. J Exp Med. 1985 Apr 1;161(4):748–754. doi: 10.1084/jem.161.4.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rosen A. D., Frumin N. V. Focal epileptogenesis after intracortical hemoglobin injection. Exp Neurol. 1979 Nov;66(2):277–284. doi: 10.1016/0014-4886(79)90080-3. [DOI] [PubMed] [Google Scholar]
  16. Sadrzadeh S. M., Anderson D. K., Panter S. S., Hallaway P. E., Eaton J. W. Hemoglobin potentiates central nervous system damage. J Clin Invest. 1987 Feb;79(2):662–664. doi: 10.1172/JCI112865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sharma O. P., Krishna Murti C. R. Ascorbic acid--a naturally occurring mediator of lipid peroxide formation in rat brain. J Neurochem. 1976 Jul;27(1):299–301. doi: 10.1111/j.1471-4159.1976.tb01582.x. [DOI] [PubMed] [Google Scholar]
  18. Sharma S. K., Krishna Murti C. R. Production of lipid peroxides by brain. J Neurochem. 1968 Feb;15(2):147–149. doi: 10.1111/j.1471-4159.1968.tb06187.x. [DOI] [PubMed] [Google Scholar]
  19. WARAVDEKAR V. S., SASLAW L. D. A sensitive colorimetric method for the estimation of 2-deoxy sugars with the use of the malonaldehyde-thiobarbituric acid reaction. J Biol Chem. 1959 Aug;234(8):1945–1950. [PubMed] [Google Scholar]
  20. Willmore L. J., Sypert G. W., Munson J. V., Hurd R. W. Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex. Science. 1978 Jun 30;200(4349):1501–1503. doi: 10.1126/science.96527. [DOI] [PubMed] [Google Scholar]
  21. Zaleska M. M., Floyd R. A. Regional lipid peroxidation in rat brain in vitro: possible role of endogenous iron. Neurochem Res. 1985 Mar;10(3):397–410. doi: 10.1007/BF00964608. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES