Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Nov;82(5):1655–1660. doi: 10.1172/JCI113777

Murine glomerular leukotriene B4 synthesis. Manipulation by (n-6) fatty acid deprivation and cellular origin.

J B Lefkowith 1, A R Morrison 1, G F Schreiner 1
PMCID: PMC442734  PMID: 2846657

Abstract

Leukotriene (LT) B4 is an important pro-inflammatory autocoid. In order to investigate the potential role of this eicosanoid in renal inflammation, in this study we determined the capability of glomeruli to synthesize this mediator. Glomeruli were able to synthesize LTB4 when provided with exogenous substrate in a dose-dependent fashion in the presence of ionophore A23187. Ionophore, although by itself a weak agonist for LTB4 formation, was required for LTB4 production from exogenous arachidonate. The identity of LTB4 was confirmed by specific radioimmunoassay, high pressure liquid chromatography, and gas chromatography/mass spectrometry. The synthesis of LTB4 was inhibited by BW755C (a lipoxygenase/cyclooxygenase inhibitor) but not indomethacin. Essential fatty acid (EFA) deficiency, obtained by the deprivation of (n-6) fatty acids, is known to exert a protective effect in renal inflammatory states. This dietary manipulation markedly attenuated the ability of glomeruli to synthesize LTB4. In contrast, the synthesis of cyclooxygenase products from exogenous arachidonate was increased by EFA deficiency. Because EFA deficiency has been shown to deplete glomeruli of resident mesangial macrophages, it was hypothesized that this effect accounted for the diminished LTB4 synthesis. To test this hypothesis, glomeruli were depleted of macrophages using x-irradiation. Glomeruli from these animals exhibited a marked decrease in LTB4 synthesis. Glomerular synthesis of cyclooxygenase products was unaffected by irradiation. In sum, glomeruli have the capability to synthesize LTB4, and this capacity is correlated with the presence of glomerular macrophages. EFA deficiency attenuates the ability of glomeruli to synthesize LTB4 by depleting them of macrophages.

Full text

PDF
1655

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrightson C. R., Evers A. S., Griffin A. C., Needleman P. Effect of endogenously produced leukotrienes and thromboxane on renal vascular resistance in rabbit hydronephrosis. Circ Res. 1987 Oct;61(4):514–522. doi: 10.1161/01.res.61.4.514. [DOI] [PubMed] [Google Scholar]
  2. Badr K. F., Kelley V. E., Rennke H. G., Brenner B. M. Roles for thromboxane A2 and leukotrienes in endotoxin-induced acute renal failure. Kidney Int. 1986 Oct;30(4):474–480. doi: 10.1038/ki.1986.210. [DOI] [PubMed] [Google Scholar]
  3. Baud L., Hagege J., Sraer J., Rondeau E., Perez J., Ardaillou R. Reactive oxygen production by cultured rat glomerular mesangial cells during phagocytosis is associated with stimulation of lipoxygenase activity. J Exp Med. 1983 Dec 1;158(6):1836–1852. doi: 10.1084/jem.158.6.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans J. F., Nathaniel D. J., Zamboni R. J., Ford-Hutchinson A. W. Leukotriene A3. A poor substrate but a potent inhibitor of rat and human neutrophil leukotriene A4 hydrolase. J Biol Chem. 1985 Sep 15;260(20):10966–10970. [PubMed] [Google Scholar]
  5. Ford-Hutchinson A. W., Bray M. A., Doig M. V., Shipley M. E., Smith M. J. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature. 1980 Jul 17;286(5770):264–265. doi: 10.1038/286264a0. [DOI] [PubMed] [Google Scholar]
  6. Gimbrone M. A., Jr, Brock A. F., Schafer A. I. Leukotriene B4 stimulates polymorphonuclear leukocyte adhesion to cultured vascular endothelial cells. J Clin Invest. 1984 Oct;74(4):1552–1555. doi: 10.1172/JCI111570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hurd E. R., Johnston J. M., Okita J. R., MacDonald P. C., Ziff M., Gilliam J. W. Prevention of glomerulonephritis and prolonged survival in New Zealand Black/New Zealand White F1 hybrid mice fed an essential fatty acid-deficient diet. J Clin Invest. 1981 Feb;67(2):476–485. doi: 10.1172/JCI110056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jakschik B. A., Morrison A. R., Sprecher H. Products derived from 5,8,11-eicosatrienoic acid by the 5-lipoxygenase-leukotriene pathway. J Biol Chem. 1983 Nov 10;258(21):12797–12800. [PubMed] [Google Scholar]
  9. Kreisberg J. I., Karnovsky M. J., Levine L. Prostaglandin production by homogeneous cultures of rat glomerular epithelial and mesangial cells. Kidney Int. 1982 Oct;22(4):355–359. doi: 10.1038/ki.1982.181. [DOI] [PubMed] [Google Scholar]
  10. Lefkowith J. B. Essential fatty acid deficiency inhibits the in vivo generation of leukotriene B4 and suppresses levels of resident and elicited leukocytes in acute inflammation. J Immunol. 1988 Jan 1;140(1):228–233. [PubMed] [Google Scholar]
  11. Lefkowith J. B., Flippo V., Sprecher H., Needleman P. Paradoxical conservation of cardiac and renal arachidonate content in essential fatty acid deficiency. J Biol Chem. 1985 Dec 15;260(29):15736–15744. [PubMed] [Google Scholar]
  12. Lefkowith J. B., Jakschik B. A., Stahl P., Needleman P. Metabolic and functional alterations in macrophages induced by essential fatty acid deficiency. J Biol Chem. 1987 May 15;262(14):6668–6675. [PubMed] [Google Scholar]
  13. Lefkowith J. B., Schreiner G. Essential fatty acid deficiency depletes rat glomeruli of resident macrophages and inhibits angiotensin II-induced eicosanoid synthesis. J Clin Invest. 1987 Oct;80(4):947–956. doi: 10.1172/JCI113187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leslie C. A., Gonnerman W. A., Ullman M. D., Hayes K. C., Franzblau C., Cathcart E. S. Dietary fish oil modulates macrophage fatty acids and decreases arthritis susceptibility in mice. J Exp Med. 1985 Oct 1;162(4):1336–1349. doi: 10.1084/jem.162.4.1336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lianos E. A., Andres G. A., Dunn M. J. Glomerular prostaglandin and thromboxane synthesis in rat nephrotoxic serum nephritis. Effects on renal hemodynamics. J Clin Invest. 1983 Oct;72(4):1439–1448. doi: 10.1172/JCI111100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nathaniel D. J., Evans J. F., Leblanc Y., Léveillé C., Fitzsimmons B. J., Ford-Hutchinson A. W. Leukotriene A5 is a substrate and an inhibitor of rat and human neutrophil LTA4 hydrolase. Biochem Biophys Res Commun. 1985 Sep 16;131(2):827–835. doi: 10.1016/0006-291x(85)91314-2. [DOI] [PubMed] [Google Scholar]
  17. Prickett J. D., Robinson D. R., Steinberg A. D. Dietary enrichment with the polyunsaturated fatty acid eicosapentaenoic acid prevents proteinuria and prolongs survival in NZB x NZW F1 mice. J Clin Invest. 1981 Aug;68(2):556–559. doi: 10.1172/JCI110288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Remuzzi G., Imberti L., Rossini M., Morelli C., Carminati C., Cattaneo G. M., Bertani T. Increased glomerular thromboxane synthesis as a possible cause of proteinuria in experimental nephrosis. J Clin Invest. 1985 Jan;75(1):94–101. doi: 10.1172/JCI111703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rouzer C. A., Samuelsson B. On the nature of the 5-lipoxygenase reaction in human leukocytes: enzyme purification and requirement for multiple stimulatory factors. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6040–6044. doi: 10.1073/pnas.82.18.6040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schlondorff D., Roczniak S., Satriano J. A., Folkert V. W. Prostaglandin synthesis by isolated rat glomeruli: effect of angiotensin II. Am J Physiol. 1980 Nov;239(5):F486–F495. doi: 10.1152/ajprenal.1980.239.5.F486. [DOI] [PubMed] [Google Scholar]
  21. Schreiner G. F., Cotran R. S., Unanue E. R. Modulation of Ia and leukocyte common antigen expression in rat glomeruli during the course of glomerulonephritis and aminonucleoside nephrosis. Lab Invest. 1984 Nov;51(5):524–533. [PubMed] [Google Scholar]
  22. Schreiner G. F., Kiely J. M., Cotran R. S., Unanue E. R. Characterization of resident glomerular cells in the rat expressing Ia determinants and manifesting genetically restricted interactions with lymphocytes. J Clin Invest. 1981 Oct;68(4):920–931. doi: 10.1172/JCI110347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schreiner G. F., Unanue E. R. Origin of the rat mesangial phagocyte and its expression of the leukocyte common antigen. Lab Invest. 1984 Nov;51(5):515–523. [PubMed] [Google Scholar]
  24. Smith M. J., Ford-Hutchinson A. W., Bray M. A. Leukotriene B: a potential mediator of inflammation. J Pharm Pharmacol. 1980 Jul;32(7):517–518. doi: 10.1111/j.2042-7158.1980.tb12985.x. [DOI] [PubMed] [Google Scholar]
  25. Sraer J., Rigaud M., Bens M., Rabinovitch H., Ardaillou R. Metabolism of arachidonic acid via the lipoxygenase pathway in human and murine glomeruli. J Biol Chem. 1983 Apr 10;258(7):4325–4330. [PubMed] [Google Scholar]
  26. Stenson W. F., Prescott S. M., Sprecher H. Leukotriene B formation by neutrophils from essential fatty acid-deficient rats. J Biol Chem. 1984 Oct 10;259(19):11784–11789. [PubMed] [Google Scholar]
  27. Tripp C. S., Mahoney M., Needleman P. Calcium ionophore enables soluble agonists to stimulate macrophage 5-lipoxygenase. J Biol Chem. 1985 May 25;260(10):5895–5898. [PubMed] [Google Scholar]
  28. Wedmore C. V., Williams T. J. Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature. 1981 Feb 19;289(5799):646–650. doi: 10.1038/289646a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES