Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Dec;82(6):1818–1825. doi: 10.1172/JCI113797

Regulation of biliary cholesterol secretion. Functional relationship between the canalicular and sinusoidal cholesterol secretory pathways in the rat.

F Nervi 1, I Marinović 1, A Rigotti 1, N Ulloa 1
PMCID: PMC442759  PMID: 3198756

Abstract

The functional interrelationship between biliary cholesterol secretion, sinusoidal lipoprotein cholesterol secretion and bile salt synthesis was studied in the rat. Diosgenin, fructose, and colestipol in the diet were used to, respectively, influence biliary cholesterol output, VLDL production and bile salt synthesis. In the acute bile fistula rat, biliary cholesterol output was 700% increased by diosgenin and 50% decreased by fructose. In the rats fed both diosgenin and fructose, biliary cholesterol secretion was increased only by approximately 200%, whereas biliary bile salts and phospholipid outputs were unchanged. In the isolated perfused liver, VLDL-cholesterol output was 50% reduced by diosgenin alone, but was unchanged following feeding of diosgenin plus fructose. However, the livers of rats fed diosgenin plus fructose exhibited a 700% increase in VLDL-triglyceride production and a 200% increase in VLDL-cholesterol output. A significant reciprocal relationship between VLDL-cholesterol secretion and the coupling ratio of cholesterol to bile salts in bile was observed. Colestipol added to the diet maintained both sinusoidal and biliary cholesterol outputs within the normal range. In the chronic bile fistula rat, colestipol increased bile salt synthesis by 100% while diosgenin and fructose diets had no effect. Similarly, the addition of fructose to the colestipol diet did not decrease bile salt synthesis. These data suggest a reciprocal relationship between biliary cholesterol secretion and hepatic secretion of cholesterol as VLDL particles. The free cholesterol pool used for bile salt synthesis seems functionally unrelated to the pool from which VLDL-cholesterol and biliary cholesterol originate. These findings support the idea that metabolic compartmentalization of hepatic cholesterol is a major determinant of the quantity of cholesterol available for recruitment by the bile salt-dependent biliary cholesterol secretory mechanism.

Full text

PDF
1818

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander C. A., Hamilton R. L., Havel R. J. Subcellular localization of B apoprotein of plasma lipoproteins in rat liver. J Cell Biol. 1976 May;69(2):241–263. doi: 10.1083/jcb.69.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baginski E. S., Foà P. P., Zak B. Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem. 1967 Apr;13(4):326–332. [PubMed] [Google Scholar]
  3. Balasubramaniam S., Venkatesan S., Mitropoulos K. A., Peters T. J. The submicrosomal localization of acyl-coenzyme A-cholesterol acyltransferase and its substrate, and of cholesteryl esters in rat liver. Biochem J. 1978 Sep 15;174(3):863–872. doi: 10.1042/bj1740863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennion L. J., Grundy S. M. Effects of obesity and caloric intake on biliary lipid metabolism in man. J Clin Invest. 1975 Oct;56(4):996–1011. doi: 10.1172/JCI108180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coyne M. J., Bonorris G. G., Goldstein L. I., Schoenfield L. J. Effect of chenodeoxycholic acid and phenobarbital on the rate-limiting enzymes of hepatic cholesterol and bile acid synthesis in patients with gallstones. J Lab Clin Med. 1976 Feb;87(2):281–291. [PubMed] [Google Scholar]
  7. Cronholm T., Burlingame A. L., Sjövall J. Utilization of the carbon and hydrogen atoms of ethanol in the biosynthesis of steroids and bile acids. Eur J Biochem. 1974 Dec 2;49(3):497–510. doi: 10.1111/j.1432-1033.1974.tb03854.x. [DOI] [PubMed] [Google Scholar]
  8. Del Pozo R., Nervi F., Covarrubias C., Ronco B. Reversal of progesterone-induced biliary cholesterol output by dietary cholesterol and ethynylestradiol. Biochim Biophys Acta. 1983 Sep 20;753(2):164–172. doi: 10.1016/0005-2760(83)90004-8. [DOI] [PubMed] [Google Scholar]
  9. Drevon C. A., Engelhorn S. C., Steinberg D. Secretion of very low density lipoproteins enriched in cholesteryl esters by cultured rat hepatocytes during simulation of intracellular cholesterol esterification. J Lipid Res. 1980 Nov;21(8):1065–1071. [PubMed] [Google Scholar]
  10. FRANTZ I. D., Jr, DULIT E., DAVIDSON A. G. The state of esterification of the sterols of rat skin. J Biol Chem. 1957 May;226(1):139–144. [PubMed] [Google Scholar]
  11. Gregory D. H., Vlahcevic Z. R., Prugh M. F., Swell L. Mechanism of secretion of biliary lipids: role of a microtubular system in hepatocellular transport of biliary lipids in the rat. Gastroenterology. 1978 Jan;74(1):93–100. [PubMed] [Google Scholar]
  12. Gregory D. H., Vlahcevic Z. R., Schatzki P., Swell L. Mechanism of secretion of biliary lipids. I. Role of bile canalicular and microsomal membranes in the synthesis and transport of biliary lecithin and cholesterol. J Clin Invest. 1975 Jan;55(1):105–114. doi: 10.1172/JCI107900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamilton R. L., Berry M. N., Williams M. C., Severinghaus E. M. A simple and inexpensive membrane "lung" for small organ perfusion. J Lipid Res. 1974 Mar;15(2):182–186. [PubMed] [Google Scholar]
  14. Hamilton R. L., Regen D. M., Gray M. E., LeQuire V. S. Lipid transport in liver. I. Electron microscopic identification of very low density lipoproteins in perfused rat liver. Lab Invest. 1967 Feb;16(2):305–319. [PubMed] [Google Scholar]
  15. Hardison W. G., Apter J. T. Micellar theory of biliary cholesterol excretion. Am J Physiol. 1972 Jan;222(1):61–67. doi: 10.1152/ajplegacy.1972.222.1.61. [DOI] [PubMed] [Google Scholar]
  16. Ide T., Ontko J. A. Increased secretion of very low density lipoprotein triglyceride following inhibition of long chain fatty acid oxidation in isolated rat liver. J Biol Chem. 1981 Oct 25;256(20):10247–10255. [PubMed] [Google Scholar]
  17. Kern F., Jr, Everson G. T., DeMark B., McKinley C., Showalter R., Braverman D. Z., Szczepanik-Van Leeuwen P., Klein P. D. Biliary lipids, bile acids, and gallbladder function in the human female: effects of contraceptive steroids. J Lab Clin Med. 1982 Jun;99(6):798–805. [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Lange Y., Steck T. L. Cholesterol-rich intracellular membranes: a precursor to the plasma membrane. J Biol Chem. 1985 Dec 15;260(29):15592–15597. [PubMed] [Google Scholar]
  20. Marsh J. B. Lipoproteins in a nonrecirculating perfusate of rat liver. J Lipid Res. 1974 Nov;15(6):544–550. [PubMed] [Google Scholar]
  21. Mitropoulos K. A., Myant N. B., Gibbons G. F., Balasubramaniam S., Reeves B. E. Cholesterol precursor pools for the synthesis of cholic and chemodeoxycholic acids in rats. J Biol Chem. 1974 Oct 10;249(19):6052–6056. [PubMed] [Google Scholar]
  22. Nervi F. O., Covarrubias C. F., Valdivieso V. D., Ronco B. O., Solari A., Tocornal J. Hepatic cholesterogenesis in Chileans with cholesterol gallstone disease. Evidence for sex differences in the regulation of hepatic cholesterol metabolism. Gastroenterology. 1981 Mar;80(3):539–545. [PubMed] [Google Scholar]
  23. Nervi F. O., Del Pozo R., Covarrubias C. F., Ronco B. O. The effect of progesterone on the regulatory mechanisms of biliary cholesterol secretion in the rat. Hepatology. 1983 May-Jun;3(3):360–367. doi: 10.1002/hep.1840030314. [DOI] [PubMed] [Google Scholar]
  24. Nervi F., Bronfman M., Allalón W., Depiereux E., Del Pozo R. Regulation of biliary cholesterol secretion in the rat. Role of hepatic cholesterol esterification. J Clin Invest. 1984 Dec;74(6):2226–2237. doi: 10.1172/JCI111649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nilsell K., Angelin B., Liljeqvist L., Einarsson K. Biliary lipid output and bile acid kinetics in cholesterol gallstone disease. Evidence for an increased hepatic secretion of cholesterol in Swedish patients. Gastroenterology. 1985 Aug;89(2):287–293. doi: 10.1016/0016-5085(85)90328-2. [DOI] [PubMed] [Google Scholar]
  26. Noel S. P., Wong L., Dolphin P. J., Dory L., Rubenstein D. Secretion of cholesterol-rich lipoproteins by perfused livers of hypercholesterolemic rats. J Clin Invest. 1979 Aug;64(2):674–683. doi: 10.1172/JCI109508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Normann P. T., Norum K. R. Newly synthesized hepatic cholesterol as precursor for cholesterol and bile acids in rat bile. Scand J Gastroenterol. 1976;11(4):427–432. [PubMed] [Google Scholar]
  28. Parkinson T. M., Gundersen K., Nelson N. A. Effects of colestipol (U-26,597A), a new bile acid sequestrant, on serum lipids in experimental animals and man. Atherosclerosis. 1970 May-Jun;11(3):531–537. doi: 10.1016/0021-9150(70)90030-4. [DOI] [PubMed] [Google Scholar]
  29. Percy-Robb I. W., Boyd G. S. The synthesis of bile acids in perfused rat liver subjected to chronic biliary drainage. Biochem J. 1970 Jul;118(3):519–530. doi: 10.1042/bj1180519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Robins S. J., Brunengraber H. Origin of biliary cholesterol and lecithin in the rat: contribution of new synthesis and preformed hepatic stores. J Lipid Res. 1982 May;23(4):604–608. [PubMed] [Google Scholar]
  31. STAPLE E., GURIN S. The incorporation of radioactive acetate into biliary cholesterol and cholic acid. Biochim Biophys Acta. 1954 Nov;15(3):372–376. doi: 10.1016/0006-3002(54)90039-6. [DOI] [PubMed] [Google Scholar]
  32. Salen G., Nicolau G., Shefer S., Mosbach E. H. Hepatic cholesterol metabolism in patients with gallstones. Gastroenterology. 1975 Sep;69(3):676–684. [PubMed] [Google Scholar]
  33. Schwartz C. C., Berman M., Vlahcevic Z. R., Halloran L. G., Gregory D. H., Swell L. Multicompartmental analysis of cholesterol metabolism in man. Characterization of the hepatic bile acid and biliary cholesterol precursor sites. J Clin Invest. 1978 Feb;61(2):408–423. doi: 10.1172/JCI108952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schwartz C. C., Halloran L. G., Vlahcevic Z. R., Gregory D. H., Swell L. Preferential utilization of free cholesterol from high-density lipoproteins for biliary cholesterol secretion in man. Science. 1978 Apr 7;200(4337):62–64. doi: 10.1126/science.204996. [DOI] [PubMed] [Google Scholar]
  35. Schwartz C. C., Vlahcevic Z. R., Halloran L. G., Gregory D. H., Meek J. B., Swell L. Evidence for the existence of definitive hepatic cholesterol precursor compartments for bile acids and biliary cholesterol in man. Gastroenterology. 1975 Dec;69(6):1379–1382. [PubMed] [Google Scholar]
  36. Stone B. G., Erickson S. K., Craig W. Y., Cooper A. D. Regulation of rat biliary cholesterol secretion by agents that alter intrahepatic cholesterol metabolism. Evidence for a distinct biliary precursor pool. J Clin Invest. 1985 Nov;76(5):1773–1781. doi: 10.1172/JCI112168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. TALALAY P. Enzymic analysis of steroid hormones. Methods Biochem Anal. 1960;8:119–143. doi: 10.1002/9780470110249.ch3. [DOI] [PubMed] [Google Scholar]
  38. Topping D. L., Mayes P. A. The immediate effects of insulin and fructose on the metabolism of the perfused liver. Changes in lipoprotein secretion, fatty acid oxidation and esterification, lipogenesis and carbohydrate metabolism. Biochem J. 1972 Jan;126(2):295–311. doi: 10.1042/bj1260295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Turley S. D., Dietschy J. M. Re-evaluation of the 3 alpha-hydroxysteroid dehydrogenase assay for total bile acids in bile. J Lipid Res. 1978 Sep;19(7):924–928. [PubMed] [Google Scholar]
  40. Ulloa N., Garrido J., Nervi F. Ultracentrifugal isolation of vesicular carriers of biliary cholesterol in native human and rat bile. Hepatology. 1987 Mar-Apr;7(2):235–244. doi: 10.1002/hep.1840070206. [DOI] [PubMed] [Google Scholar]
  41. Valdivieso V., Palma R., Nervi F., Covarrubias C., Severin C., Antezana C. Secretion of biliary lipids in young Chilean women with cholesterol gallstones. Gut. 1979 Nov;20(11):997–1000. doi: 10.1136/gut.20.11.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wagner C. I., Trotman B. W., Soloway R. D. Kinetic analysis of biliary lipid excretion in man and dog. J Clin Invest. 1976 Feb;57(2):473–477. doi: 10.1172/JCI108299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wheeler H. O., King K. K. Biliary excretion of lecithin and cholesterol in the dog. J Clin Invest. 1972 Jun;51(6):1337–1350. doi: 10.1172/JCI106930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. ZAK B. Simple rapid microtechnic for serum total cholesterol. Am J Clin Pathol. 1957 May;27(5):583–588. doi: 10.1093/ajcp/27.5_ts.583. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES