Abstract
Rat hepatocytes contain several types of Ca2+-linked receptors, all of which stimulate glycogen breakdown by increasing cytosolic free Ca2+ concentration [( Ca2+]c). In vivo desensitization of this Ca2+ messenger system was studied in hepatocytes isolated from either pheochromocytoma (PHEO)-harboring and chronically norepinephrine (NE)-infused rats. Homologous desensitization for alpha 1-adrenergic receptor-mediated phosphorylase activation developed in the early stage of PHEO rats (3-4 wk after implantation), whereas, in the later stage of tumor development or in the NE-infused rats, phosphorylase responses to all Ca2+-mobilizing stimulations were subsensitive (heterologous desensitization). In the homologous desensitization, the [Ca2+]c response to alpha 1-adrenergic stimulation was selectively reduced. We found, using the phenoxybenzamine inactivation method, that there was a linear relationship between alpha 1 receptor density and the [Ca2+]c response; consequently, the blunted [Ca2+]c response to alpha 1-adrenergic stimulation could not be explained by the 34% downregulation of alpha 1 receptors seen in these rats. These results indicated that uncoupling at a step proximal to alpha 1 receptor-stimulated [Ca2+]c increase is also of primary importance in homologous desensitization of phosphorylase activation. On the other hand, heterologous desensitization also involved alteration(s) at steps distal to the rise in [Ca2+]c. Our data demonstrate that prolonged exposure to catecholamines results in desensitization of the [Ca2+]c mobilization pathway and may involve multiple mechanisms.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander N., Yoneda S., Vlachakis N. D. Catecholamines in plasma and erythrocytes of rats with transplantable pheochromocytoma. Life Sci. 1985 Feb 11;36(6):571–577. doi: 10.1016/0024-3205(85)90639-3. [DOI] [PubMed] [Google Scholar]
- Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Besse J. C., Furchgott R. F. Dissociation constants and relative efficacies of agonists acting on alpha adrenergic receptors in rabbit aorta. J Pharmacol Exp Ther. 1976 Apr;197(1):66–78. [PubMed] [Google Scholar]
- Bissell D. M., Guzelian P. S. Phenotypic stability of adult rat hepatocytes in primary monolayer culture. Ann N Y Acad Sci. 1980;349:85–98. doi: 10.1111/j.1749-6632.1980.tb29518.x. [DOI] [PubMed] [Google Scholar]
- Borle A. B., Freudenrich C. C., Snowdowne K. W. A simple method for incorporating aequorin into mammalian cells. Am J Physiol. 1986 Aug;251(2 Pt 1):C323–C326. doi: 10.1152/ajpcell.1986.251.2.C323. [DOI] [PubMed] [Google Scholar]
- Borle A. B., Snowdowne K. W. Measurement of intracellular ionized calcium with aequorin. Methods Enzymol. 1986;124:90–116. doi: 10.1016/0076-6879(86)24011-2. [DOI] [PubMed] [Google Scholar]
- Bréant B., Keppens S., De Wulf H. Heterologous desensitization of the cyclic AMP-independent glycogenolytic response in rat liver cells. Biochem J. 1981 Dec 15;200(3):509–514. doi: 10.1042/bj2000509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chrisman T. D., Jordan J. E., Exton J. H. Purification of rat liver phosphorylase kinase. J Biol Chem. 1982 Sep 25;257(18):10798–10804. [PubMed] [Google Scholar]
- Colucci W. S., Alexander R. W. Norepinephrine-induced alteration in the coupling of alpha 1-adrenergic receptor occupancy to calcium efflux in rabbit aortic smooth muscle cells. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1743–1746. doi: 10.1073/pnas.83.6.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Togni P., Della Bianca V., Grzeskowiak M., Di Virgilio F., Rossi F. Mechanism of desensitization of neutrophil response to N-formylmethionylleucylphenylalanine by slow rate of receptor occupancy. Studies on changes in Ca2+ concentration and phosphatidylinositol turnover. Biochim Biophys Acta. 1985 Jan 28;838(1):23–31. doi: 10.1016/0304-4165(85)90245-4. [DOI] [PubMed] [Google Scholar]
- DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
- Exton J. H. Mechanisms involved in alpha-adrenergic phenomena. Am J Physiol. 1985 Jun;248(6 Pt 1):E633–E647. doi: 10.1152/ajpendo.1985.248.6.E633. [DOI] [PubMed] [Google Scholar]
- Exton J. H. Mechanisms involved in calcium-mobilizing agonist responses. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1986;20:211–262. [PubMed] [Google Scholar]
- Gilboe D. P., Larson K. L., Nuttall F. Q. Radioactive method for the assay of glycogen phosphorylases. Anal Biochem. 1972 May;47(1):20–27. doi: 10.1016/0003-2697(72)90274-6. [DOI] [PubMed] [Google Scholar]
- Goldberg L. I., Kohli J. D., Kotake A. N., Volkman P. H. Characteristics of the vascular dopamine receptor: comparison with other receptors. Fed Proc. 1978 Aug;37(10):2396–2402. [PubMed] [Google Scholar]
- Harden T. K. Agonist-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev. 1983 Mar;35(1):5–32. [PubMed] [Google Scholar]
- Hassoun J., Monges G., Giraud P., Henry J. F., Charpin C., Payan H., Toga M. Immunohistochemical study of pheochromocytomas. An investigation of methionine-enkephalin, vasoactive intestinal peptide, somatostatin, corticotropin, beta-endorphin, and calcitonin in 16 tumors. Am J Pathol. 1984 Jan;114(1):56–63. [PMC free article] [PubMed] [Google Scholar]
- Hoffman B. B., Lefkowitz R. J. Alpha-adrenergic receptor subtypes. N Engl J Med. 1980 Jun 19;302(25):1390–1396. doi: 10.1056/NEJM198006193022504. [DOI] [PubMed] [Google Scholar]
- Johnson P. C., Ware J. A., Cliveden P. B., Smith M., Dvorak A. M., Salzman E. W. Measurement of ionized calcium in blood platelets with the photoprotein aequorin. Comparison with Quin 2. J Biol Chem. 1985 Feb 25;260(4):2069–2076. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leeb-Lundberg L. M., Cotecchia S., DeBlasi A., Caron M. G., Lefkowitz R. J. Regulation of adrenergic receptor function by phosphorylation. I. Agonist-promoted desensitization and phosphorylation of alpha 1-adrenergic receptors coupled to inositol phospholipid metabolism in DDT1 MF-2 smooth muscle cells. J Biol Chem. 1987 Mar 5;262(7):3098–3105. [PubMed] [Google Scholar]
- Lefkowitz R. J., Stadel J. M., Caron M. G. Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization. Annu Rev Biochem. 1983;52:159–186. doi: 10.1146/annurev.bi.52.070183.001111. [DOI] [PubMed] [Google Scholar]
- Lurie K. G., Tsujimoto G., Hoffman B. B. Desensitization of alpha-1 adrenergic receptor-mediated vascular smooth muscle contraction. J Pharmacol Exp Ther. 1985 Jul;234(1):147–152. [PubMed] [Google Scholar]
- Lynch C. J., Blackmore P. F., Charest R., Exton J. H. The relationships between receptor binding capacity for norepinephrine, angiotensin II, and vasopressin and release of inositol trisphosphate, Ca2+ mobilization, and phosphorylase activation in rat liver. Mol Pharmacol. 1985 Aug;28(2):93–99. [PubMed] [Google Scholar]
- Mauger J. P., Sladeczek F., Bockaert J. Characteristics and metabolism of alpha 1 adrenergic receptors in a nonfusing muscle cell line. J Biol Chem. 1982 Jan 25;257(2):875–879. [PubMed] [Google Scholar]
- Mefford I. N., Ward M. M., Miles L., Taylor B., Chesney M. A., Keegan D. L., Barchas J. D. Determination of plasma catecholamines and free 3,4-dihydroxyphenylacetic acid in continuously collected human plasma by high performance liquid chromatography with electrochemical detection. Life Sci. 1981 Feb 2;28(5):477–483. doi: 10.1016/0024-3205(81)90140-5. [DOI] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Murphy G. J., Hruby V. J., Trivedi D., Wakelam M. J., Houslay M. D. The rapid desensitization of glucagon-stimulated adenylate cyclase is a cyclic AMP-independent process that can be mimicked by hormones which stimulate inositol phospholipid metabolism. Biochem J. 1987 Apr 1;243(1):39–46. doi: 10.1042/bj2430039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohnishi A., Minegishi A., Sasaki T., Suganuma T., Ishizaki T. Effect of beta-adrenoceptor blockade on exercise-induced plasma catecholamine concentrations and their dissipation profile. Br J Clin Pharmacol. 1987 Mar;23(3):339–343. doi: 10.1111/j.1365-2125.1987.tb03054.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollock W. K., MacIntyre D. E. Desensitization and antagonism of vasopressin-induced phosphoinositide metabolism and elevation of cytosolic free calcium concentration in human platelets. Biochem J. 1986 Feb 15;234(1):67–73. doi: 10.1042/bj2340067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen H. The calcium messenger system (2). N Engl J Med. 1986 May 1;314(18):1164–1170. doi: 10.1056/NEJM198605013141807. [DOI] [PubMed] [Google Scholar]
- Snavely M. D., Ziegler M. G., Insel P. A. Subtype-selective down-regulation of rat renal cortical alpha- and beta-adrenergic receptors by catecholamines. Endocrinology. 1985 Nov;117(5):2182–2189. doi: 10.1210/endo-117-5-2182. [DOI] [PubMed] [Google Scholar]
- Snowdowne K. W., Borle A. B. Measurement of cytosolic free calcium in mammalian cells with aequorin. Am J Physiol. 1984 Nov;247(5 Pt 1):C396–C408. doi: 10.1152/ajpcell.1984.247.5.C396. [DOI] [PubMed] [Google Scholar]
- Su Y. F., Cubeddu L., Perkins J. P. Regulation of adenosine 3':5'-monophosphate content of human astrocytoma cells: desensitization to catecholamines and prostaglandins. J Cyclic Nucleotide Res. 1976 Jul-Aug;2(4):257–270. [PubMed] [Google Scholar]
- Thomas A. P., Alexander J., Williamson J. R. Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes. J Biol Chem. 1984 May 10;259(9):5574–5584. [PubMed] [Google Scholar]
- Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsujimoto A., Tsujimoto G., Azhar S., Hoffman B. B. Altered responsiveness to alpha- and beta-adrenoceptor stimulation in hepatocytes cultured in defined medium. Biochem Pharmacol. 1986 Apr 15;35(8):1400–1404. doi: 10.1016/0006-2952(86)90290-x. [DOI] [PubMed] [Google Scholar]
- Tsujimoto A., Tsujimoto G., Hoffman B. B. Age-related change in adrenergic regulation of glycogen phosphorylase in rat hepatocytes. Mech Ageing Dev. 1986 Jan;33(2):167–175. doi: 10.1016/0047-6374(86)90025-4. [DOI] [PubMed] [Google Scholar]
- Tsujimoto A., Tsujimoto G., Kato K., Hashimoto K. Developmental alteration in adrenergic regulation of hepatic glycogen phosphorylase. Jpn J Pharmacol. 1986 Jan;40(1):161–168. doi: 10.1254/jjp.40.161. [DOI] [PubMed] [Google Scholar]
- Tsujimoto G., Honda K., Hoffman B. B., Hashimoto K. Desensitization of postjunctional alpha 1- and alpha 2-adrenergic receptor-mediated vasopressor responses in rat harboring pheochromocytoma. Circ Res. 1987 Jul;61(1):86–98. doi: 10.1161/01.res.61.1.86. [DOI] [PubMed] [Google Scholar]
- Tsujimoto G., Manger W. M., Hoffman B. B. Desensitization of beta-adrenergic receptors by pheochromocytoma. Endocrinology. 1984 Apr;114(4):1272–1278. doi: 10.1210/endo-114-4-1272. [DOI] [PubMed] [Google Scholar]
- Wakelam M. J., Murphy G. J., Hruby V. J., Houslay M. D. Activation of two signal-transduction systems in hepatocytes by glucagon. Nature. 1986 Sep 4;323(6083):68–71. doi: 10.1038/323068a0. [DOI] [PubMed] [Google Scholar]
- Ware J. A., Johnson P. C., Smith M., Salzman E. W. Effect of common agonists on cytoplasmic ionized calcium concentration in platelets. Measurement with 2-methyl-6-methoxy 8-nitroquinoline (quin2) and aequorin. J Clin Invest. 1986 Mar;77(3):878–886. doi: 10.1172/JCI112385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ware J. A., Johnson P. C., Smith M., Salzman E. W. Inhibition of human platelet aggregation and cytoplasmic calcium response by calcium antagonists: studies with aequorin and quin2. Circ Res. 1986 Jul;59(1):39–42. doi: 10.1161/01.res.59.1.39. [DOI] [PubMed] [Google Scholar]
- Warren S., Chute R. N. Pheochromocytoma. Cancer. 1972 Feb;29(2):327–331. doi: 10.1002/1097-0142(197202)29:2<327::aid-cncr2820290210>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Cooper R. H., Joseph S. K., Thomas A. P. Inositol trisphosphate and diacylglycerol as intracellular second messengers in liver. Am J Physiol. 1985 Mar;248(3 Pt 1):C203–C216. doi: 10.1152/ajpcell.1985.248.3.C203. [DOI] [PubMed] [Google Scholar]
