Abstract
Parkinson's disease (PD) is a common progressive, neurodegenerative brain disease that is promoted by mitochondrial dysfunction, oxidative stress, protein aggregation and proteasome dysfunction in the brain. Compared with computer tomography (CT) or magnetic resonance imaging (MRI), non-invasive nuclear radiopharmaceuticals have great significance for the early diagnosis of PD due to their high sensitivity and specificity in atypical and preclinical cases. Based on the development of coordination chemistry and chelator design, radionuclides may be delivered to lesions by attaching to PD-related transporters and receptors, such as dopamine, serotonin, and others. In this review, we comprehensively detailed the current achievements in radionuclide imaging in Parkinson’s disease.
Keywords: Neurodegenerative, Parkinson's disease, radiopharmaceuticals
INTRODUCTION
As the second most widespread neurodegenerative disease in elderly people, Parkinson’s disease (PD) is characterized by cardinal motor symptoms, including tremor, rigidity, bradykinesia and postural instability [1]. The histopathological hallmarks of PD are dopamine depletion in the striatum, which results from the progressive degeneration of the substantial nigral dopamine neurons in patient brains [2, 3]. Certain etiopathogenic processes, such as mitochondrial dysfunction, oxidative stress, protein aggregation and proteasome dysfunction, are thought to promoted PD, which can lead to nigrostriatal cell dysfunction and death [4].
The prevalence rate of PD increases with age, and the overall prevalence of PD has recently been increasing because of an aging population [5]. Currently, the diagnosis of PD is primarily based on clinical symptoms, in addition to a favorable response to levodopa therapy [6, 7]. Therefore, rigorous diagnostic criteria are necessary to ensure that the diagnosis is applied consistently and reliably.
Almost 25% of PD patients with an antemortem clinical diagnosis were found to have no PD during postmortem examinations in clinical-pathological studies [8]. PD patients manifest symptoms only when 50 to 80% of the nigrostriatal neurons are lost. Clinical methods are not able to provide an early diagnosis before a significant loss of dopamine neurons has occurred. Computer tomography or magnetic resonance imaging can be used to diagnose Parkinson's disease, but they have obvious disadvantages, such as low sensitivity and specificity, particularly in certain atypical or preclinical cases. However, PD patients would benefit from early diagnosis, particularly before severe dopamine neuron loss. Therefore, improvements to the accuracy of PD clinical diagnoses are necessary, and non-invasive nuclear imaging agents and nuclear imaging technology may provide these improvements.
Nuclides-based positron imaging tomography (PET) or single photon emission computed tomography (SPECT) imaging methods are emerging techniques for the diagnosis, staging and evaluation of PD as many new types of nuclear imaging agents are being developed and clinically applied [8]. After decades of research in the field, some progress has been made and imaging agents that are targeted to PD have become a popular research topic in the field of nuclides-based imaging.
The study of PD imaging agents has developed for decades and has greatly progressed [9-12]. PD imaging agents, including positron imaging agents and single photon imaging agents using different nuclide types ([123I], [131I], [99mTc], [11C], [18F], etc.) may be categorized as dopamine transporter imaging agents, dopamine receptor imaging agents, serotonin transporter imaging agents and other receptor imaging agents.
[18F]FDG
[18F]Deoxyglucose ([18F]FDG) is the most popular PET imaging agent for detecting glucose metabolism. Because the analogue of glucose, [18F]Deoxyglucose (Fig. 1), has the same cellular transport and phosphorylation processes as glucose [13-16] and glucose metabolism is very active in the brain, the partial or whole glucose metabolism in the brain can be measured via the dynamic distribution of [18F]FDG PET scanning [13, 14].
Fig. (1).
Structures of Glucose and [18F]FDG.
[18F]FDG PET is useful for early PD diagnosis [17-19], progression assessment [20] and rehabilitation evaluation [21]. Generally, [18F]FDG PET imaging indicates normal or increased glucose metabolism in the striatum and, occasionally, hypometabolism signs in the temporal parietal region. Therefore, an [18F]FDG PET imaging evaluation may be a useful adjunct for clinical examinations when performing a differential diagnosis for Parkinsonism [22]. Research performed by Juh et al [22] demonstrated that significant hypometabolism had occurred in the cerebral neocortex of PD patients. Twenty-four patients with idiopathic Parkinson's disease (IPD), progressive supra nuclear palsy (PSP), and multiple system atrophy (MSA) and 22 age-matched normal controls were assessed in this research. A total of 21 Parkinsonism patients with final clinical diagnoses were visually and quantitatively evaluated using NeuroQ software in a study performed by Akdemir ÜÖ et al; their results indicated that brain [18F]FDG PET imaging could be a useful reference during the differential diagnosis of PD patients [23]. To track metabolic glucose uptake during brain activity, Olmo [24] and Haegelen et al [25] performed [18F]FDG PET on PD patients after the completion of a rehabilitation program. These authors observed glucose changes in several cerebral regions.
DOPAMINERGIC SYSTEM IMAGING AGENTS
[18F]DOPA
As described above, Parkinson's disease results from brain cell dysfunction in the region that controls movement. This dysfunction induces a shortage of dopamine, a neuro- transmitter that regulates important physiological functions, such as cognitive, learning, memory, body movement, etc. Dopamine (DA) is synthesized by tuberoinfundibular dopaminergic neurons in the hypothalamic dorsal medial arcuate nucleus (dmARN), is released from the median eminence, and is then delivered to the anterior pituitary by hypothalamohypophysial portal vessels. Dopamine loss results in the characteristic symptoms of Parkinson's disease.
Fig. (2). Structures of dopamine, levodopa, [18F]DOPA [11C]MHED and [123I]MIBG.
In past decades, [18F] fluoro-3, 4-dihydroxyphenyl-Lalanine ([18F]DOPA) has been used as an imaging probe to examine DA synthesis, storage, and turnover in the human brain using PET visualization [26-31]. [18F]DOPA (Fig. 2) traces the levodopa (LDOPA) metabolic pathway and provides metabolic information about LDOPA, which is quite distinct from the information provided by ligands of dopamine receptors, transporters or other targets within the dopaminergic system [28]. Kyono and Walker have successfully used [18F]DOPA PET to study DA dysfunctional rat models of PD [32, 33]. [18F]DOPA was also proved and used as an effective tool to study the pathogenesis of PD and the projection systems of dopaminergic neurons by Sharma and co-workers [34-37]. Additionally, Sharma reported the connection between coenzyme Q(10) and PD in mice by examining complex-1 and [18F]DOPA [38]. Asymmetric low radioactive uptake in the bilateral putamen and caudate nucleus can be observed in PD patients using [18F]DOPA PET scanning. [18F]DOPA PET also has been used in several studies to examine neuropathology, psychological cognition, PD evaluation and long-term follow-up in Parkinson's disease. A study performed by Pavese and co-workers revealed significant DA metabolism changes in the brain between early PD patients and healthy controls using [18F]DOPA [39]. Saito [40] performed multiple regression using an [18F]DOPA and [18F]FDG PET analysis to determine the specific cognitive and motor symptoms of brain regions in non-demented patients with PD. Their study demonstrated that changes in striatal [18F]DOPA uptake and corresponding FDG metabolic changes in the primary motor cortex represented dysfunction in the corticobasal ganglia-thalamocortical loop in the motor system; however, the change of [18F]DOPA uptake in the anterior cingulate gyrus may be affected by increased dopamine synthesis in the surviving dopamine neurons.
Figure 2.
Structures of dopamine, levodopa, [18F]DOPA [11C]MHED and [123I]MIBG.
However, [18F]DOPA is rapidly cleared from peripheral tissues after intravenous injection, limiting its imaging timing and utility [40]. Consequently, alternative radiotracers have been investigated. In addition to [18F]DOPA [31-44], the sympathoneuronal imaging agents [11C]-meta-hydroxyl-ephedrine (MHED) [45, 46] and [123I]-meta-iodobenzyl- guanidine (MIBG) (Fig. 2) [47-51] have also been used to evaluate cardiac sympathetic loss in PD [52].
Dopamine Transporter
The dopamine transporter (DAT) is a transmembrane protein that transports dopamine out of the neuron synapse and into the presynaptic cytoplasm. DAT is specifically expressed in DA neurons and its density highly corresponds to the number of DA neurons; therefore, DAT may be used to reflect the functional changes in DA neurons [53]. Physiological studies have indicated that DAT facilitates consistence of cellular DA, regulates DA signal intensity, and controls DA cleaning in synaptic gaps [54]. It has been demonstrated that in idiopathic Parkinson’s disease patients, DAT dramatically declined in the brain along with dopaminergic system degeneration; therefore, DAT nuclear imaging is thought to be a potential biomarker for the diagnosis of DA degeneration [55-59].
The presynaptic terminals in the central nervous system (CNS) can be imaged using DAT probes, such as cocaine analogs, [123I]-N-2-carbomethyl-3-(4-iodophenyl)-tropane ([123I]FP-CIT, [123I]-Ioflupane, [123I]β-CIT-FP), [123I]-β-carbomethoxy-3β-(4-iodophenyl)tropane ([123I]β-CIT), [11C]-N-2-carbomethoxy-3-(4-fluorophenyl)-tropane ([11C]CFT) [60-63], [123I]-Altropane [64, 65],2-β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl)-nortropane ([18F]FECNT) [66-68], [99mTc]TRODAT-1 [69, 70], [123I]PE2I, and other types of radiotracers, such as [11C]-methylphenidate ([11C] DMP) [71, 72] and others (Fig. 3). Consequently, dopamine release can be evaluated indirectly to diagnose Parkinson’s disease because DAT levels at the presynaptic site are able to be quantified.
Figure 3.
Structures of DAT radioligands.
[99mTc]TRODAT-1 and [123I]FP-CIT SPECT are commonly used to evaluate the impairment of the nigrostriatal pathway in Parkinson’s disease. These radioligands are also used for the early diagnosis and evaluation of clinical symptom severity in Parkinson’s disease because of their steady uptake, long retention time in the brain and their ability to clearly display DAT density in the striatum. Felicio et al [73] reported that SPECT using [99mTc]TRODAT-1 had 100% sensitivity and 70% specificity in clinically unclear Parkinsonian syndromes (CUPS). [123I]FP-CIT has been used for the differential diagnosis of essential tremor or Parkinson’s disease and predicts the clinical symptom severity of Parkinson’s disease. [123I]FP-CIT has also been used for the early diagnosis, PD follow-up and monitoring DAT changes in Parkinson’s disease patients [74-77]. A [11C]FE-CIT PET assessment demonstrated that the severity of nigrostriatal damage was not dependent on the age at onset during the early disease phase of sporadic PD patients [78]. Furthermore, [18F]FECNT evaluation indicated that PD heritability may be associated with more severe and widespread genetic dopaminergic injury [79]. The β-CIT striatal-to-nonspecific binding ratios in patient brains were evaluated using [123I]β-CIT and a significantly increased S/N ratio was observed after selective serotonin reuptake inhibitor (SSRI) treatment [80-83]. A more recent study determined that SSRI paroxetine treatment was able to significantly increase the quantification of striatal [123I]FP-CIT binding to DAT in humans. These results indicate that in vivo [123I]FP-CIT and [123I]β-CIT are able to bind DATs as well as central serotonin transporters (SERTs) [84].
Masilamoni et al [78] validated the use of [18F]FECNT as a PET radiotracer to assess the degree of striatal dopamine terminal denervation and midbrain dopaminergic cell loss in MPTP-treated Parkinsonian monkeys. Because humans and other primates are highly similar, [18F]FECNT, a highly sensitive and specific dopamine transporter ligand, may be effective for DAT imaging in PD patients.
Dopamine Receptor Imaging Agents
Dopamine is synthesized in the CNS; however, the complicated neuronal dopamine physical functions are mediated in combination with different dopamine receptors (DA Receptor) in the brain.Although dopamine receptors are widely distributed in the brain, different subtypes of DA receptors presumably reflect different functional roles. Five subtypes of DA receptors have been investigated to date. Based on their pharmacological properties, the D2, D3, and D4 receptors are classified as D2-like receptors, which are able to directly induce physical functions after DA and DA receptor binding; and the D1 and D5 receptors, classified as D1-like receptors, have permissive and synergistic actions with D2-like receptors but do not have clear physical functions. Histochemical observations have indicated that dopamine receptors are classified with respect to connectivity; dopamine D1-like receptors are mainly expressed on striatal neurons that project into the substantia nigra, whereas D2-like receptors are mainly localized on striatal–pallidal neurons [85].
Fig. (4). Structures of DA receptor radioligands.
Particularly, the occurrence of PD with dopamine dysfunction is closely related to D2-like receptors, which are distributed in the cerebral hypothalamus, striatum, substantia nigra, and anterior pituitary. D2-like receptors have attracted much attention in the field of nuclear imaging. D2- like receptor imaging agents are primarily comprised of [11C]Raclopride [86-88], [123I]IBZM [89-92], [18F] Desmethoxyfallypride ([18F]DMFP) [93, 94], [11C]MNPA [94, 95], [131I]Epidepride and [124I]Epidepride [96-99], [11C] (+)-PHNO [100, 101], [11C]NMSP [102, 103], [18F]MCL-524 [104], etc (Fig. 4).
Figure 4.
Structures of DA receptor radioligands.
D2-like receptor imaging agents may contribute to the early diagnosis, differential diagnosis, disease course, therapeutic efficacy monitoring and follow-up of PD. Verstappen et al [105] confirmed that there was asymmetric D2 receptor upregulation in PD in a study using [123I]IBZM and [123I]FP-CIT SPECT, but the sensitivity of the contralateral higher striatal [123I]IBZM binding was only 56%. Therefore, the presence of contralateral higher striatal [123I]IBZM uptake did not have sufficient diagnostic accuracy for PD and an independent assessment using [123I]IBZM SPECT cannot determine the PD risk in patients with Parkinsonism that also have no contralateral up-regulation of D2 receptors. Politis reported a significant reduction in the mean hypothalamic [11C]Raclopride binding potentials of PD patients compared with normal controls (0.2714+/-0.06 vs. 0.3861+/-0.04; mean+/-SD; p<0.05) [106]. However, D2 receptor imaging may be influenced by certain drugs, such as levodopa; therefore, some researchers believe that D2-like receptor imaging should be combined with DAT or other imaging methods for PD diagnosis. In recent research, the combined striatal D2R BP and cerebral influx ratio information from a single dynamic [11C]Raclopride PET imaging analysis successfully distinguished patients with PD or multiple-system atrophy with predominant Parkinsonism (MSA-P) with high accuracy [107].
Fig. (5). Structures of [11C]DTBZ and [18F]AV-133.
PET studies of dopamine D2 and D3 receptors (D2/D3) have predominantly been conducted using antagonists analogues, such as [11C]Raclopride. [108-110]. However, more recently developed agonist radioligands have demonstrated enhanced sensitivity to endogenous dopamine, such as [18F]DMFP [93], [11C]N-propyl-norapomorphine ([11C]NPA) [111], [11C]MNPA [112], [11C]4-propyl-9-hydroxynaphthoxazine [113]. A recent study indicated that [11C]Raclopride binding in the striatum of PD patients was prominently associated with the reduced endogenous dopamine and that [11C]NMSP demonstrated a smaller association with endogenous dopamine compared with [11C] Raclopride [113]. [18F]MCL-524, a [11C]MNPA analog, appears suitable for D2/D3 receptor binding quantification in vivo, encouraging future translation to human studies when compared with [11C]Raclopride [104].
Vesicular Monoamine Transporter Imaging Agent
The vesicular monoamine transporter (VMAT) is a transport protein complex that is responsible for transporting monoamine neurotransmitters into the synaptic vesicles, which are releasing neurotransmitters into monoaminergic neurons. VMAT is known to transport several neuro- transmitters, such as dopamine, serotonin, norepinephrine, epinephrine, histamine and others. One subtype of VMAT, VMAT2, is primarily expressed in a variety of monoaminergic cells in the CNS, such as mast cells, the sympathetic nervous system brain, and cells that contain histamine in the gut [114]. Because of these properties VMAT2 was considered to be a novel PD imaging probe. VMAT2 targeting produced excellent image quality and had the ability to differentiate reduced VMAT2 uptake sites in patients with PD; these properties have made non-invasive nuclear VMAT2 imaging a leader in the frontier of current PD imaging research.
There are two PD imaging agents that target VMAT2: [11C]DTBZ and [18F]AV-133. Both of these agents are based on a dihydrotetrabenazine scaffold (Fig. 5). Koeppe et al [115] performed PET imaging using [11C] Dihydrotetrabenazine ([11C]DTBZ) to examine blood-to-brain ligand transport and striatal monoaminergic presynaptic binding in patients with DLB (dementia with Lewy bodies), PD, and AD and in 57 healthy elderly controls. The imaging results indicated that a single PET neuroimaging analysis using [11C]DTBZ was able to differentiate DLB from both PD and AD. Furthermore, [11C]DTBZ combined with [18F]DOPA imaging has made significant progress in evaluating dopamine system damage and prognosis in animal models [115].
Figure 5.
Structures of [11C]DTBZ and [18F]AV-133.
[18F]AV-133 is another 18F labeled dihydrotetrabenazine radiotracer that has a propanediol linker that is used for VMAT2 imaging. Okamura et al [116] analyzed the binding potential (BP) of [18F]AV-133 to VMAT2 in 17 PD patients and 6 healthy controls and determined that the BP of VMAT2 in PD patients was dramatically decreased in the posterior putamen, anterior putamen, and caudate nucleus; furthermore, the VMAT2 BP in caudate nuclei was closely correlated with clinical severity in PD patients. These results indicated that the novel 18F-labeled ligand [18F]AV-133 can sensitively detect monoaminergic reductions in neuronal termini in PD patients [117].
5-HYDROXYTRYPTAMINE RECEPTOR AND TRANSPORTER IMAGING AGENTS
5-hydroxytryptamine (5-HT or serotonin) is an important monoamine neurotransmitter that is widely distributed in the brain. 5-HT is synthesized in the serotonergic neurons of the CNS and contributes to feelings of happiness. As neuropathology, neurochemistry and other related subjects have developed, there is the belief that 5-HT metabolic changes are important in the mechanism of PD. Recent research has determined that there is a significant decrease of the 5-HT transporter (SERT) in the striatum and other brain areas in PD patients [118-122]. Currently, there are several types of 5-HT relevant radiotracers available for imaging studies, including 5-HT1A receptor imaging agents and 5-HT transporter (SERT) imaging agents [123], etc.
The 5-HT1A receptor is the most widespread subtype of 5-HT receptor, which is a G protein-coupled receptor and mediates inhibitory neurotransmission. 5-HT1A receptor activation has been proven to increase dopamine release and may be useful for improving PD symptoms. [11C]WAY-100635 (Fig. 6) was a commonly used 5-HT1A receptor imaging agent. A PET study using [11C]WAY-100635 in 23 patients with PD and 8 age-matched healthy volunteers was performed by Doder et al [124]; they observed a 30% reduction of 5-HT1A binding potential in the midbrain raphe in PD patients, which strongly supported previous indirect in vivo evidence that implicated decreased serotonergic neurotransmission in PD.
Figure 6.
Structure of [11C]WAY 100635
Currently, there are several SERT imaging agents available, including [11C]DASB [125-127], [123I]ADAM [128, 129], [11C]McN5652 [130, 131], [11C] MADAM[132, 133], [11C]HOMADAM [134, 135] (Fig. 7). However, 18F has some advantages over 11C, notably, 18F-labeled radiopharmaceuticals can be delivered if a cyclotron is not available. Therefore, numerous 18F-labeled SERT imaging agents have been developed and evaluated in animal models, such as [18F]McN5652 [136-141], [18F]ACF [142], 4-[18F]ADAM [143-145], 5-[18F]ADAM [146], [18F]AFM [147], [18F] FBASB [148] and [18F]FPBM [149] (Fig. 8). Among these agents, [18F]McN5652 has been demonstrated to be suitable for SERT quantification using PET analysis in humans in in vivo studies [150]. The 18F-labeled SERT radioligand, 4-[18F]ADAM, has also been reported as a viable agent for both preclinical [143] and human studies [151-154].
Figure 7.
Structures of [11C] or [123I] -labeled SERT radioligands.
Figure 8.
Structures of [18F] labeled SERT radioligands.
Fig. (7). Structures of [11C] or [123I] -labeled SERT radioligands.
Politis et al [126] observed significant [11C]DASB binding reductions in the striatal, brainstem, and cortical regions in PD patients using [11C]DASB PET in 30 PD patients. Progressive non-linear serotonergic dysfunction was investigated in PD patients, which appeared not to influence SERT binding and did not determine disability levels or chronic exposure to dopaminergic therapy. Li and co-workers [155] performed [99mTc]TRODAT-1 and [123I] ADAM SPECT in four healthy and one 6-OHDA-induced PD monkey. Their study demonstrated that [99mTc]TRODAT-1 uptake in the striatum of the PD monkey was remarkably lower than in the normal monkeys and that the thalamic and striatal uptake of [123I]ADAM was decreased in the PD monkey. The successful use of a dual-isotope SPECT using [99mTc]TRODAT-1 and [123I]ADAM suggests that it is possible to simultaneously evaluate dopaminergic and serotonergic system changes in PD models.
OTHER IMAGING AGENTS
There are a variety of agents that may be used in non-invasive nuclear PD imaging that are currently being tested in animal experiments or preclinical trials, such as [11C] MP4A [156] targeted acetylcholinesterase, [123I]5IA [157] and [18F]2FA [158] targeted nicotinic acetylcholine receptors in vivo (nAChRs), [123I]QNB [159] targeted muscarinic acetylcholine receptors (mAChRs), [11C](R)-PK11195 [160] targeted peripheral benzodiazepine sites (PBBS) and others (Fig. 9).
Figure 9.
Structures of other imaging agents.
Recent results have demonstrated that in PD patients without dementia [161], as well as de novo or early PD patients, AchE is particularly reduced in the posterior cingulate and posterior temporo-parieto-occipital associative cortex [162]. It has been proven that PD patients without dementia have more severe cholinergic deficits in these areas compared with patients with AD [156, 160]. Brain cholinergic dysfunction was observed at a very early stage of PD using [11C]MP4A PET studies; furthermore, this dysfunction may precede the manifestation of motor symptoms. Interestingly, lower AChE activity in the cerebral cortex was also observed in the early PD group compared with the advanced PD group without dementia [156, 159]. A [18F]2FA PET study in PD patients observed decreasednicotinic receptors (nAChRs) in the nigrostriatal system, indicating that [18F]2FA could be a useful tool to study post-synaptic cholinergic transmission [158].
In vivo SPECT imaging of muscarinic acetylcholine receptors using [123I]QNB in patients with dementia with Lewy bodies and Parkinson's disease dementia determined that significantly elevated mAChRs in the occipital lobe were associated with DLB and PD [157]. A [11C](R)-PK11195 PET study in patients with idiopathic Parkinson's disease confirmed that widespread microglial activation is associated with the PD pathological process [160].
Fig. (9). Structures of other imaging agents.
Parkinson's disease itself is not associated with a consistent pattern of cerebral blood flow alterations in the basal ganglia, but reduced parietal blood flow is often reported [163]. A recent study determined that hypo- perfusion in the inferior frontal region can be observed in patients with Parkinson's disease with dementia using [99mTc]HMPAO SPECT [164] (Fig. 9). Brain perfusion imaging agents, such as [99mTc]HMPAO, can also be used to measure cerebral tissue perfusion in PD patients [163-165].
Several novel imaging approaches have been proposed that examine mitochondrial oxidative stress. Ikawa et al [166] evaluated a PET method using [62Cu]-diacetyl-bis (N(4)-methyl-thiosemicarbazone) ([62Cu]ATSM) (Fig. 9) to evaluate oxidative stress and the accompanying mitochondrial dysfunction during PD pathogenesis. Their study observed enhanced striatal oxidative stress, particularly in the contralateral striatum of PD patients compared with control subjects. Additionally, this increased oxidative stress was associated with the progression of disease severity. These findings indicate a potential correlation between oxidative stress and striatal neurodegeneration in PD.
CONCLUSIONS
During the past three decades, nuclear brain imaging has proven to be a promising, powerful and unique method for the evaluation of brain function during normal and disease states. Research investigating Parkinson's disease diagnosis has occurred in tandem with the rapid evolution of molecular imaging technologies and their applications in preclinical studies and clinical practice. Compared with traditional anatomical imaging technologies, PET nuclear imaging assessments provide spatial localization of metabolic changes as well as accurate and consistent quantification of their distribution. These properties have allowed PET nuclear imaging to be employed as a valuable tool during clinical neuro-disease examinations. These personalized highly sensitive and specific evaluations will be useful for the early diagnosis, prognosis and long-term follow up of Parkinson's disease.
ACKNOWLEDGEMENTS
This study was supported by the National Natural Science Foundation of China (Grant Nos. 81271532, 81101079 and 81301250).
CONFLICT OF INTEREST
The author(s) confirm that this article content has no conflict of interest.
LIST OF ABBREVIATIONS
- 5-HT
= 5-hydroxytryptamine
- BP
= binding potential
- CNS
= central nervous system
- CT
= computer tomography
- CUPS
= clinically unclear Parkinsonian syndromes
- DA
= dopamine
- DAT
= dopamine transporter
- IPD
= idiopathic Parkinson's disease
- LDOPA
= levodopa
- mAChR
= muscarinic acetylcholine receptor
- MRI
= magnetic resonance imaging
- MSA
= multiple system atrophy
- MSA-P
= multiple-system atrophy with predominant Parkinsonism
- nAChR
= nicotinic acetylcholine receptor
- PD
= Parkinson's disease
- PET
= positron imaging tomography
- PBBS
= peripheral benzodiazepine site
- PSP
= progressive supra nuclear palsy
- SERT
= serotonin transporter
- SPECT
= single photon emission computed tomo- graphy
- SSRI
= selective serotonin reuptake inhibitor
- VMAT
= vesicular monoamine transporter
REFERENCES
- 1.Jankovic J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry. 2008;79(4):368–376. doi: 10.1136/jnnp.2007.131045. [DOI] [PubMed] [Google Scholar]
- 2.Braak H., Del Tredici K., Rüb U., de Vos R.A., Jansen Steur E.N., Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging. 2003;24(2):197–211. doi: 10.1016/S0197-4580(02)00065-9. [DOI] [PubMed] [Google Scholar]
- 3.Braak H., Müller C.M., Rüb U., Ackermann H., Bratzke H., de Vos R.A., Del Tredici K. Pathology associated with sporadic Parkinson’s disease--where does it end? J. Neural Transm. Suppl. 2006;70(70):89–97. doi: 10.1007/978-3-211-45295-0_15. [DOI] [PubMed] [Google Scholar]
- 4.Dawson T.M., Dawson V.L. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J. Clin. Invest. 2003;111(2):145–151. doi: 10.1172/JCI200317575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Tanner C.M., Goldman S.M. Epidemiology of Parkinson’s disease. Neurol. Clin. 1996;14(2):317–335. doi: 10.1016/S0733-8619(05)70259-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Gelb D.J., Oliver E., Gilman S. Diagnostic criteria for Parkinson disease. 1999. [DOI] [PubMed]
- 7.Hughes A.J., Daniel S.E., Kilford L., Lees A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry. 1992;55(3):181–184. doi: 10.1136/jnnp.55.3.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Agid Y. Parkinson’s disease: pathophysiology. Lancet. 1991;337(8753):1321–1324. doi: 10.1016/0140-6736(91)92989-F. [DOI] [PubMed] [Google Scholar]
- 9.Tai Y.F., Piccini P. Applications of positron emission tomography (PET) in neurology. J. Neurol. Neurosurg. Psychiatry. 2004;75(5):669–676. doi: 10.1136/jnnp.2003.028175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Joers v., Emborg M.E. Modeling and imaging cardiac sympathetic neurodegeneration in Parkinson’s disease. Am. J. Nucl. Med. Mol. Imaging. 2014;20(4):125–159. [PMC free article] [PubMed] [Google Scholar]
- 11.Nobili F., Morbelli S., Arnaldi D., Ferrara M., Campus C., Brugnolo A., Mazzei D., Mehrdad N., Sambuceti G., Rodriguez G. Radionuclide brain imaging correlates of cognitive impairment in Parkinson’s disease (PD). J. Neurol. Sci. 2011;310(1-2):31–35. doi: 10.1016/j.jns.2011.06.053. [DOI] [PubMed] [Google Scholar]
- 12. Hsiao IT, Weng YH, Hsieh CJ, Lin WY, Wey SP, Kung MP, Yen TC, Lu CS, Lin KJ. Correlation of Parkinson Disease Severity and 18F-DTBZ Positron Emission Tomography. JAMA Neurol. 2014;71:758–66. doi: 10.1001/jamaneurol.2014.290. [DOI] [PubMed] [Google Scholar]
- 13.Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur. J. Nucl. Med. Mol. Imaging. 2005;32(4):486–510. doi: 10.1007/s00259-005-1762-7. [DOI] [PubMed] [Google Scholar]
- 14.Phelps M.E., Huang S.C., Hoffman E.J., Selin C., Sokoloff L., Kuhl D.E. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann. Neurol. 1979;6(5):371–388. doi: 10.1002/ana.410060502. [DOI] [PubMed] [Google Scholar]
- 15.van Berkel A., Rao J.U., Kusters B., Demir T., Visser E., Mensenkamp A.R., van der Laak J.A., Oosterwijk E., Lenders J.W., Sweep F.C., Wevers R.A., Hermus A.R., Langenhuijsen J.F., Kunst D.P., Pacak K., Gotthardt M., Timmers H.J. Correlation Between In Vivo 18F-FDG PET and Immunohistochemical Markers of Glucose Uptake and Metabolism in Pheochromocytoma and Paraganglioma. J. Nucl. Med. 2014;55(8):1253–1259. doi: 10.2967/jnumed.114.137034. [DOI] [PubMed] [Google Scholar]
- 16.Wienhard K. Measurement of glucose consumption using [(18)F]fluorodeoxyglucose. Methods. 2002;27(3):218–225. doi: 10.1016/S1046-2023(02)00077-4. [DOI] [PubMed] [Google Scholar]
- 17.Kalbe E., Voges J., Weber T., Haarer M., Baudrexel S., Klein J.C., Kessler J., Sturm V., Heiss W.D., Hilker R. Frontal FDG-PET activity correlates with cognitive outcome after STN-DBS in Parkinson disease. Neurology. 2009;72(1):42–49. doi: 10.1212/01.wnl.0000338536.31388.f0. [DOI] [PubMed] [Google Scholar]
- 18.Li D., Zuo C., Guan Y., Zhao Y., Shen J., Zan S., Sun B. FDG-PET study of the bilateral subthalamic nucleus stimulation effects on the regional cerebral metabolism in advanced Parkinson disease. Acta Neurochir. Suppl. (Wien) 2006;99:51–54. doi: 10.1007/978-3-211-35205-2_10. [DOI] [PubMed] [Google Scholar]
- 19.Zhao Y.B., Sun B.M., Li D.Y., Wang Q.S. Effects of bilateral subthalamic nucleus stimulation on resting-state cerebral glucose metabolism in advanced Parkinson’s disease. Chin. Med. J. (Engl.) 2004;117(9):1304–1308. [PubMed] [Google Scholar]
- 20.Hellwig S., Amtage F., Kreft A., Buchert R., Winz O.H., Vach W., Spehl T.S., Rijntjes M., Hellwig B., Weiller C., Winkler C., Weber W.A., Tüscher O., Meyer P.T. [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology. 2012;25:1314–1322. doi: 10.1212/WNL.0b013e31826c1b0a. [DOI] [PubMed] [Google Scholar]
- 21.Halpern C.H., Rick J.H., Danish S.F., Grossman M., Baltuch G.H. Cognition following bilateral deep brain stimulation surgery of the subthalamic nucleus for Parkinson’s disease. Int. J. Geriatr. Psychiatry. 2009;24(5):443–451. doi: 10.1002/gps.2149. [DOI] [PubMed] [Google Scholar]
- 22.Juh R., Kim J., Moon D., Choe B., Suh T. Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET. Eur. J. Radiol. 2004;51(3):223–233. doi: 10.1016/S0720-048X(03)00214-6. [DOI] [PubMed] [Google Scholar]
- 23.Akdemir Ü.Ö., Tokçaer A.B., Karakuş A., Kapucu L.Ö. Brain 18F-FDG PET imaging in the differential diagnosis of parkinsonism. Clin. Nucl. Med. 2014;39(3):e220–e226. doi: 10.1097/RLU.0000000000000315. [DOI] [PubMed] [Google Scholar]
- 24.del Olmo M.F., Arias P., Furio M.C., Pozo M.A., Cudeiro J. Evaluation of the effect of training using auditory stimulation on rhythmic movement in Parkinsonian patients--a combined motor and [18F]-FDG PET study. Parkinsonism Relat. Disord. 2006;12(3):155–164. doi: 10.1016/j.parkreldis.2005.11.002. [DOI] [PubMed] [Google Scholar]
- 25.Haegelen C., García-Lorenzo D., Le Jeune F., Péron J., Gibaud B., Riffaud L., Brassier G., Barillot C., Vérin M., Morandi X. SPECT and PET analysis of subthalamic stimulation in Parkinson’s disease: analysis using a manual segmentation. J. Neurol. 2010;257(3):375–382. doi: 10.1007/s00415-009-5327-8. [DOI] [PubMed] [Google Scholar]
- 26.Garnett E.S., Firnau G., Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature. 1983;305(5930):137–138. doi: 10.1038/305137a0. [DOI] [PubMed] [Google Scholar]
- 27.Gjedde A., Reith J., Dyve S., Léger G., Guttman M., Diksic M., Evans A., Kuwabara H. Dopa decarboxylase activity of the living human brain. Proc. Natl. Acad. Sci. USA. 1991;88(7):2721–2725. doi: 10.1073/pnas.88.7.2721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Kumakura Y., Cumming P. PET studies of cerebral levodopa metabolism: a review of clinical findings and modeling approaches. Neuroscientist. 2009;15(6):635–650. doi: 10.1177/1073858409338217. [DOI] [PubMed] [Google Scholar]
- 29.Martin W.R., Palmer M.R., Patlak C.S., Calne D.B. Nigrostriatal function in humans studied with positron emission tomography. 1989. [DOI] [PubMed]
- 30.Sossi V., Doudet D.J., Holden J.E. A reversible tracer analysis approach to the study of effective dopamine turnover. J. Cereb. Blood Flow Metab. 2001;21(4):469–476. doi: 10.1097/00004647-200104000-00015. [DOI] [PubMed] [Google Scholar]
- 31.Walker M.D., Dinelle K., Kornelsen R., Lee A., Farrer M.J., Stoessl A.J., Sossi V. Measuring dopaminergic function in the 6-OHDA-lesioned rat: a comparison of PET and microdialysis. EJNMMI Res. 2013;3(1):69. doi: 10.1186/2191-219X-3-69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Walker M.D., Dinelle K., Kornelsen R., McCormick S., Mah C., Holden J.E., Farrer M.J., Stoessl A.J., Sossi V. In-vivo measurement of LDOPA uptake, dopamine reserve and turnover in the rat brain using [18F]FDOPA PET. J. Cereb. Blood Flow Metab. 2013;33(1):59–66. doi: 10.1038/jcbfm.2012.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Kyono K., Takashima T., Katayama Y., Kawasaki T., Zochi R., Gouda M., Kuwahara Y., Takahashi K., Wada Y., Onoe H., Watanabe Y. Use of [18F]FDOPA-PET for in vivo evaluation of dopaminergic dysfunction in unilaterally 6-OHDA-lesioned rats. EJNMMI Res. 2011;1(1):25. doi: 10.1186/2191-219X-1-25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Sharma S.K., Ebadi M. Distribution kinetics of 18F-DOPA in weaver mutant mice. Brain Res. Mol. Brain Res. 2005;139(1):23–30. doi: 10.1016/j.molbrainres.2005.05.018. [DOI] [PubMed] [Google Scholar]
- 35.Ebadi M., Sharma S.K., Ghafourifar P., Brown-Borg H., El Refaey H. Peroxynitrite in the pathogenesis of Parkinson’s disease and the neuroprotective role of metallothioneins. Methods Enzymol. 2005;396:276–298. doi: 10.1016/S0076-6879(05)96024-2. [DOI] [PubMed] [Google Scholar]
- 36.Sharma S., Ebadi M. SPECT neuroimaging in translational research of CNS disorders. Neurochem. Int. 2008;52(3):352–362. doi: 10.1016/j.neuint.2007.08.011. [DOI] [PubMed] [Google Scholar]
- 37.Sharma S.K., Ebadi M. In-Vivo molecular imaging in Parkinson’s disease. In: Pfeiffer R.F., Wszolek Z.K., Ebadi M., editors. Parkinson’s Disease. 2nd ed. CRC Press Taylor & Francis Group; 2013. pp. 787–802. [Google Scholar]
- 38.Sharma S.K., El Refaey H., Ebadi M. Complex-1 activity and 18F-DOPA uptake in genetically engineered mouse model of Parkinson’s disease and the neuroprotective role of coenzyme Q10. Brain Res. Bull. 2006;70(1):22–32. doi: 10.1016/j.brainresbull.2005.11.019. [DOI] [PubMed] [Google Scholar]
- 39.Pavese N., Rivero-Bosch M., Lewis S.J., Whone A.L., Brooks D.J. Progression of monoaminergic dysfunction in Parkinson’s disease: a longitudinal 18F-dopa PET study. Neuroimage. 2011;56(3):1463–1468. doi: 10.1016/j.neuroimage.2011.03.012. [DOI] [PubMed] [Google Scholar]
- 40.[40] Nagano-Saito A, Kato T, Arahata Y, Washimi Y, Nakamura A, Abe Y, Yamada T, Iwai K, Hatano K, Kawasumi Y, Kachi T, Dagher A, Ito K. Cognitive-and-motor-related regions in Parkinson’s disease: FDOPA and FDG PET studies. NeuroImage. . 2004;22:553–561. doi: 10.1016/j.neuroimage.2004.01.030. [DOI] [PubMed] [Google Scholar]
- 41.Goldstein D.S., Sharabi Y., Karp B.I., Bentho O., Saleem A., Pacak K., Eisenhofer G. Cardiac sympathetic denervation in Parkinson disease. Cleve. Clin. J. Med. 2009;76(Suppl. 2):S47–S50. doi: 10.3949/ccjm.76.s2.10. [DOI] [PubMed] [Google Scholar]
- 42.Tipre D.N., Goldstein D.S. Cardiac and extracardiac sympathetic denervation in Parkinson’s disease with orthostatic hypotension and in pure autonomic failure. J. Nucl. Med. 2005;46(11):1775–1781. [PubMed] [Google Scholar]
- 43.Goldstein D.S., Sharabi Y., Karp B.I., Bentho O., Saleem A., Pacak K., Eisenhofer G. Cardiac sympathetic denervation preceding motor signs in Parkinson disease. Clin. Auton. Res. 2007;17(2):118–121. doi: 10.1007/s10286-007-0396-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Li S.T., Dendi R., Holmes C., Goldstein D.S. Progressive loss of cardiac sympathetic innervation in Parkinson’s disease. Ann. Neurol. 2002;52(2):220–223. doi: 10.1002/ana.10236. [DOI] [PubMed] [Google Scholar]
- 45.Berding G., Schrader C.H., Peschel T., van den Hoff J., Kolbe H., Meyer G.J., Dengler R., Knapp W.H. [N-methyl 11C]meta-Hydroxyephedrine positron emission tomography in Parkinson’s disease and multiple system atrophy. Eur. J. Nucl. Med. Mol. Imaging. 2003;30(1):127–131. doi: 10.1007/s00259-002-1019-7. [DOI] [PubMed] [Google Scholar]
- 46.Raffel D.M., Koeppe R.A., Little R., Wang C.N., Liu S., Junck L., Heumann M., Gilman S. PET measurement of cardiac and nigrostriatal denervation in Parkinsonian syndromes. J. Nucl. Med. 2006;47(11):1769–1777. [PubMed] [Google Scholar]
- 47.Takatsu H., Nishida H., Matsuo H., Watanabe S., Nagashima K., Wada H., Noda T., Nishigaki K., Fujiwara H. Cardiac sympathetic denervation from the early stage of Parkinson’s disease: clinical and experimental studies with radiolabeled MIBG. J. Nucl. Med. 2000;41(1):71–77. [PubMed] [Google Scholar]
- 48.Braune S., Reinhardt M., Bathmann J., Krause T., Lehmann M., Lücking C.H. Impaired cardiac uptake of meta-[123I]iodobenzylguanidine in Parkinson’s disease with autonomic failure. Acta Neurol. Scand. 1998;97(5):307–314. doi: 10.1111/j.1600-0404.1998.tb05958.x. [DOI] [PubMed] [Google Scholar]
- 49.Orimo S., Ozawa E., Nakade S., Sugimoto T., Mizusawa H. (123)I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 1999;67(2):189–194. doi: 10.1136/jnnp.67.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.King A.E., Mintz J., Royall D.R. Meta-analysis of 123I-MIBG cardiac scintigraphy for the diagnosis of Lewy body-related disorders. Mov. Disord. 2011;26(7):1218–1224. doi: 10.1002/mds.23659. [DOI] [PubMed] [Google Scholar]
- 51.Suzuki M., Urashima M., Oka H., Hashimoto M., Taira K. Cardiac sympathetic denervation in bradykinesia-dominant Parkinson’s disease. Neuroreport. 2007;18(17):1867–1870. doi: 10.1097/WNR.0b013e3282f1ab33. [DOI] [PubMed] [Google Scholar]
- 52.Joers V, Seneczko K, Goecks NC, Kamp T, Hacker TA, Brunner KG, Engle JW, Barnhart TE, Nickles RJ, Holden JE, Emborg ME. Nonuniform Cardiac Denervation Observed by 11C-meta-Hydroxyephedrine PET in 6-OHDA-Treated Monkeys. PLOS. One. 2012;7:e35371. doi: 10.1371/journal.pone.0035371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Schultz W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 1998;80(1):1–27. doi: 10.1152/jn.1998.80.1.1. [DOI] [PubMed] [Google Scholar]
- 54.Jones S.R., Gainetdinov R.R., Jaber M., Giros B., Wightman R.M., Caron M.G. Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc. Natl. Acad. Sci. USA. 1998;95(7):4029–4034. doi: 10.1073/pnas.95.7.4029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Jones S.R., Gainetdinov R.R., Wightman R.M., Caron M.G. Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J. Neurosci. 1998;18(6):1979–1986. doi: 10.1523/JNEUROSCI.18-06-01979.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Storch A., Ludolph A.C., Schwarz J. Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J. Neural Transm. 2004;111(10-11):1267–1286. doi: 10.1007/s00702-004-0203-2. [DOI] [PubMed] [Google Scholar]
- 57.Rachakonda V., Pan T.H., Le W.D. Biomarkers of neurodegenerative disorders: how good are they? Cell Res. 2004;14(5):347–358. doi: 10.1038/sj.cr.7290235. [DOI] [PubMed] [Google Scholar]
- 58.Vernier P., Moret F., Callier S., Snapyan M., Wersinger C., Sidhu A. The degeneration of dopamine neurons in Parkinson’s disease: insights from embryology and evolution of the mesostriatocortical system. Ann. N. Y. Acad. Sci. 2004;1035:231–249. doi: 10.1196/annals.1332.015. [DOI] [PubMed] [Google Scholar]
- 59.Brooks D.J. Positron emission tomography and single-photon emission computed tomography in central nervous system drug development. 2005. [DOI] [PMC free article] [PubMed]
- 60.Ravina B., Eidelberg D., Ahlskog J.E., Albin R.L., Brooks D.J., Carbon M., Dhawan V., Feigin A., Fahn S., Guttman M., Gwinn-Hardy K., McFarland H., Innis R., Katz R.G., Kieburtz K., Kish S.J., Lange N., Langston J.W., Marek K., Morin L., Moy C., Murphy D., Oertel W.H., Oliver G., Palesch Y., Powers W., Seibyl J., Sethi K.D., Shults C.W., Sheehy P., Stoessl A.J., Holloway R. The role of radiotracer imaging in Parkinson disease. Neurology. 2005;64(2):208–215. doi: 10.1212/01.WNL.0000149403.14458.7F. [DOI] [PubMed] [Google Scholar]
- 61.Bajaj N., Hauser R.A., Grachev I.D. Clinical utility of dopamine transporter single photon emission CT (DaT-SPECT) with (123I) ioflupane in diagnosis of parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry. 2013;84(11):1288–1295. doi: 10.1136/jnnp-2012-304436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Olivares Romero J., Arjona Padillo A. Diagnostic accuracy of 123 I-FP-CIT SPECT in diagnosing drug-induced parkinsonism: a prospective study. Neurologia. 2013;28(5):276–282. doi: 10.1016/j.nrl.2012.05.005. [DOI] [PubMed] [Google Scholar]
- 63.Ouyang J., El Fakhri G., Moore S.C. Fast Monte Carlo based joint iterative reconstruction for simultaneous 99mTc/ 123I SPECT imaging. Med. Phys. 2007;34(8):3263–3272. doi: 10.1118/1.2756601. [DOI] [PubMed] [Google Scholar]
- 64.Gleave J.A, Farncombe T.H., Saab C., Doering L.C. 2011. [DOI] [PubMed]
- 65.Fischer K., Sossi V., von Ameln-Mayerhofer A., Reischl G., Pichler B.J. In vivo quantification of dopamine transporters in mice with unilateral 6-OHDA lesions using [11C]methylphenidate and PET. Neuroimage. 2012;59(3):2413–2422. doi: 10.1016/j.neuroimage.2011.08.109. [DOI] [PubMed] [Google Scholar]
- 66.Honer M., Hengerer B., Blagoev M., Hintermann S., Waldmeier P., Schubiger P.A., Ametamey S.M. Comparison of [18F]FDOPA, [18F]FMT and [18F]FECNT for imaging dopaminergic neurotransmission in mice. Nucl. Med. Biol. 2006;33(5):607–614. doi: 10.1016/j.nucmedbio.2006.04.005. [DOI] [PubMed] [Google Scholar]
- 67.Masilamoni G., Votaw J., Howell L., Villalba R.M., Goodman M., Voll R.J., Stehouwer J., Wichmann T., Smith Y. (18)F-FECNT: validation as PET dopamine transporter ligand in parkinsonism. Exp. Neurol. 2010;226(2):265–273. doi: 10.1016/j.expneurol.2010.08.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68. Nye JA, Votaw JR, Bremner JD, Davis MR, Voll RJ, Camp VM, Goodman MM. uantification of dopamine transporter density with [18F]FECNT PET in healthy humans. Nucl. Med. . iol.;2014, 41:217–222. doi: 10.1016/j.nucmedbio.2013.12.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Wu H., Lou C., Huang Z., Shi G. SPECT imaging of dopamine transporters with (99m)Tc-TRODAT-1 in major depression and Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 2011;23(1):63–67. doi: 10.1176/appi.neuropsych.23.1.63. [DOI] [PubMed] [Google Scholar]
- 70.Hsiao I.T., Weng Y.H., Lin W.Y., Hsieh C.J., Wey S.P., Yen T.C., Kung M.P., Lu C.S., Lin K.J. Comparison of 99mTc-TRODAT-1 SPECT and 18 F-AV-133 PET imaging in healthy controls and Parkinson’s disease patients. Nucl. Med. Biol. 2014;41(4):322–329. doi: 10.1016/j.nucmedbio.2013.12.017. [DOI] [PubMed] [Google Scholar]
- 71.Sossi V., Dinelle K., Jivan S., Fischer K., Holden J.E., Doudet D. In vivo dopamine transporter imaging in a unilateral 6-hydroxydopamine rat model of Parkinson disease using 11C-methylphenidate PET. J. Nucl. Med. 2012;53(5):813–822. doi: 10.2967/jnumed.111.101436. [DOI] [PubMed] [Google Scholar]
- 72.Fischer K, Sossi V, von Ameln-Mayerhofer A, Reischl G, Pichler BJ. In vivo quantification of dopamine transporters in mice with unilateral 6-OHDA lesions using [11C]methylphenidate and PET. J. Nucl. Med.;2012, 53:813–22. doi: 10.1016/j.neuroimage.2011.08.109. [DOI] [PubMed] [Google Scholar]
- 73.Felicio A.C., Godeiro-Junior C., Shih M.C., Borges V., Silva S.M., Aguiar Pde.C., Hoexter M.Q., Barsottini O.G., Andrade L.A., Bressan R.A., Ferraz H.B. Evaluation of patients with Clinically Unclear Parkinsonian Syndromes submitted to brain SPECT imaging using the technetium-99m labeled tracer TRODAT-1. J. Neurol. Sci. 2010;291(1-2):64–68. doi: 10.1016/j.jns.2009.12.024. [DOI] [PubMed] [Google Scholar]
- 74.Mo S.J., Linder J., Forsgren L., Larsson A., Johansson L., Riklund K. Pre- and postsynaptic dopamine SPECT in the early phase of idiopathic parkinsonism: a population-based study. Eur. J. Nucl. Med. Mol. Imaging. 2010;37(11):2154–2164. doi: 10.1007/s00259-010-1520-3. [DOI] [PubMed] [Google Scholar]
- 75.Palumbo B, Fravolini ML, Nuvoli S, Spanu A, Paulus KS, Schillaci O, Madeddu G. Comparison of two neural network classifiers in the differential diagnosis of essential tremor and Parkinson’s disease by 123I-FP-CIT brain SPECT. Eur. J. Nucl. Med. Mol. Im. ging;2010, 37:2146–2153. doi: 10.1007/s00259-010-1481-6. [DOI] [PubMed] [Google Scholar]
- 76.Ortega Lozano S.J., Martínez Del Valle Torres M.D., Jiménez-Hoyuela García J.M., Gutiérrez Cardo A.L., Campos Arillo V. [Diagnostic accuracy of FP-CIT SPECT in patients with parkinsonism]. Rev. Esp. Med. Nucl. 2007;26(5):277–285. doi: 10.1157/13109142. [DOI] [PubMed] [Google Scholar]
- 77.Djaldetti R., Treves T.A., Ziv I., Melamed E., Lampl Y., Lorberboym M. Use of a single [123I]-FP-CIT SPECT to predict the severity of clinical symptoms of Parkinson disease. Neurol. Sci. 2009;30(4):301–305. doi: 10.1007/s10072-009-0100-4. [DOI] [PubMed] [Google Scholar]
- 78.Panzacchi A, Moresco RM, Garibotto V, Antonini A, Gobbo C, Isaias IU, Goldwurm S, Bonaldi L, Carpinelli A, Pezzoli G, Fazio F, Perani D. A voxel-based PET study of dopamine transporters in Parkinson's disease:Relevance of age at onset. Neurobiol. Dis.;2008, 31:102–109. doi: 10.1016/j.nbd.2008.03.012. [DOI] [PubMed] [Google Scholar]
- 79.Masilamoni G., Votaw J., Howell L., Villalba R.M., Goodman M., Voll R.J., Stehouwer J., Wichmann T., Smith Y., Goodman M.M. (18)F-FECNT: validation as PET dopamine transporter ligand in parkinsonism. Exp. Neurol. 2010;226(2):265–273. doi: 10.1016/j.expneurol.2010.08.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.de Win MML, Habraken JBA, Reneman L, van den Brink W, den Heeten GJ, Booij J. Validation of [123I]b-CIT SPECT to assess serotonin transporters in vivo in humans: a doubleblind, placebo-controlled, crossover SPECT study with the selective serotonin reuptake inhibitor citalopram. Neuropsychopharmaco. ogy.; 2005, 30:996–1005. doi: 10.1038/sj.npp.1300683. [DOI] [PubMed] [Google Scholar]
- 81.Kugaya A., Seneca N.M., Snyder P.J., Williams S.A., Malison R.T., Baldwin R.M., Seibyl J.P., Innis R.B. Changes in human in vivo serotonin and dopamine transporter availabilities during chronic antidepressant administration. Neuropsychopharmacology. 2003;28(2):413–420. doi: 10.1038/sj.npp.1300036. [DOI] [PubMed] [Google Scholar]
- 82.Tauscher J, Pirker W, de Zwaan M, Asenbaum S, Br¨ucke T, Kasper S. In vivo visualization of serotonin transporters in the human brain during fluoxetine treatment. Eur. Neuropsychopharmacol. 1999:177–179. doi: 10.1016/s0924-977x(98)00013-3. [DOI] [PubMed] [Google Scholar]
- 83.Scheffel U., Kim S., Cline E.J., Kuhar M.J. Occupancy of the serotonin transporter by fluoxetine, paroxetine, and sertraline: in vivo studies with [125I]RTI-55. Synapse. 1994;16(4):263–268. doi: 10.1002/syn.890160403. [DOI] [PubMed] [Google Scholar]
- 84.Booij J., de Jong J., de Bruin K., Knol R., de Win M.M., van Eck-Smit B.L. Quantification of striatal dopamine transporters with 123I-FP-CIT SPECT is influenced by the selective serotonin reuptake inhibitor paroxetine: a double-blind, placebo-controlled, crossover study in healthy control subjects. J. Nucl. Med. 2007;48(3):359–366. [PubMed] [Google Scholar]
- 85.Gerfen C.R., Engber T.M., Mahan L.C., Susel Z., Chase T.N., Monsma F.J., Jr, Sibley D.R. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250(4986):1429–1432. doi: 10.1126/science.2147780. [DOI] [PubMed] [Google Scholar]
- 86.Ishida Y., Kawai K., Magata Y., Abe H., Yoshimoto M., Takeda R., Hashiguchi H., Mukai T., Saji H. Alteration of striatal [11C]raclopride and 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine uptake precedes development of methamphetamine-induced rotation following unilateral 6-hydroxydopamine lesions of medial forebrain bundle in rats. Neurosci. Lett. 2005;389(1):30–34. doi: 10.1016/j.neulet.2005.06.060. [DOI] [PubMed] [Google Scholar]
- 87.Kosaka J., Takahashi H., Ito H., Takano A., Fujimura Y., Matsumoto R., Nozaki S., Yasuno F., Okubo Y., Kishimoto T., Suhara T. Decreased binding of [11C]NNC112 and [11C]SCH23390 in patients with chronic schizophrenia. Life Sci. 2010;86(21-22):814–818. doi: 10.1016/j.lfs.2010.03.018. [DOI] [PubMed] [Google Scholar]
- 88.Pirker S., Perju-Dumbrava L., Kovacs G.G., Traub-Weidinger T., Asenbaum S., Pirker W. Dopamine D2 receptor SPECT in corticobasal syndrome and autopsy-confirmed corticobasal degeneration. Parkinsonism Relat. Disord. 2013;19(2):222–226. doi: 10.1016/j.parkreldis.2012.10.010. [DOI] [PubMed] [Google Scholar]
- 89.Schwarz J., Tatsch K., Gasser T., Arnold G., Pogarell O., Künig G., Oertel W.H. 123I-IBZM binding compared with long-term clinical follow up in patients with de novo parkinsonism. Mov. Disord. 1998;13(1):16–19. doi: 10.1002/mds.870130107. [DOI] [PubMed] [Google Scholar]
- 90.Eisensehr I., Linke R., Tatsch K., Kharraz B., Gildehaus J.F., Wetter C.T., Trenkwalder C., Schwarz J., Noachtar S. Increased muscle activity during rapid eye movement sleep correlates with decrease of striatal presynaptic dopamine transporters. IPT and IBZM SPECT imaging in subclinical and clinically manifest idiopathic REM sleep behavior disorder, Parkinson’s disease, and controls. Sleep. 2003;26(5):507–512. doi: 10.1093/sleep/26.5.507. [DOI] [PubMed] [Google Scholar]
- 91.Larisch R., Klimke A. [Clinical impact of cerebral dopamine-D2 receptor scintigraphy]. Nucl. Med. (Stuttg.) 1998;37(7):245–250. [PubMed] [Google Scholar]
- 92.Schreckenberger M., Hägele S., Siessmeier T., Buchholz H.G., Armbrust-Henrich H., Rösch F., Gründer G., Bartenstein P., Vogt T. The dopamine D2 receptor ligand 18F-desmethoxyfallypride: an appropriate fluorinated PET tracer for the differential diagnosis of parkinsonism. Eur. J. Nucl. Med. Mol. Imaging. 2004;31(8):1128–1135. doi: 10.1007/s00259-004-1465-5. [DOI] [PubMed] [Google Scholar]
- 93.Heinz A., Siessmeier T., Wrase J., Buchholz H.G., Gründer G., Kumakura Y., Cumming P., Schreckenberger M., Smolka M.N., Rösch F., Mann K., Bartenstein P. Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am. J. Psychiatry. 2005;162(8):1515–1520. doi: 10.1176/appi.ajp.162.8.1515. [DOI] [PubMed] [Google Scholar]
- 94.Kodaka F., Ito H., Kimura Y., Fujie S., Takano H., Fujiwara H., Sasaki T., Nakayama K., Halldin C., Farde L., Suhara T. Test-retest reproducibility of dopamine D2/3 receptor binding in human brain measured by PET with [11C]MNPA and [11C]raclopride. Eur. J. Nucl. Med. Mol. Imaging. 2013;40(4):574–579. doi: 10.1007/s00259-012-2312-8. [DOI] [PubMed] [Google Scholar]
- 95.Tsukada H., Ohba H., Nishiyama S., Kakiuchi T. Differential effects of stress on [¹¹C]raclopride and [¹¹C]MNPA binding to striatal D₂/D₃ dopamine receptors: a PET study in conscious monkeys. Synapse. 2011;65(1):84–89. doi: 10.1002/syn.20845. [DOI] [PubMed] [Google Scholar]
- 96.Pirker W., Asenbaum S., Wenger S., Kornhuber J., Angelberger P., Deecke L., Podreka I., Brücke T. Iodine-123-epidepride-SPECT: studies in Parkinson’s disease, multiple system atrophy and Huntington’s disease. J. Nucl. Med. 1997;38(11):1711–1717. [PubMed] [Google Scholar]
- 97.de Herder W.W., Reijs A.E., Feelders R.A., van Aken M.O., Krenning E.P., Tanghe H.L., van der Lely A.J., Kwekkeboom D.J. Dopamine agonist therapy of clinically non-functioning pituitary macroadenomas. Is there a role for 123I-epidepride dopamine D2 receptor imaging? Eur. J. Endocrinol. 2006;155(5):717–723. doi: 10.1530/eje.1.02281. [DOI] [PubMed] [Google Scholar]
- 98.Pinborg L.H., Videbaek C., Ziebell M., Mackeprang T., Friberg L., Rasmussen H., Knudsen G.M., Glenthoj B.Y. [123I]epidepride binding to cerebellar dopamine D2/D3 receptors is displaceable: implications for the use of cerebellum as a reference region. Neuroimage. 2007;34(4):1450–1453. doi: 10.1016/j.neuroimage.2006.11.003. [DOI] [PubMed] [Google Scholar]
- 99.Pandey S., Venugopal A., Kant R., Coleman R., Mukherjee J. ¹²⁴I-Epidepride: a PET radiotracer for extended imaging of dopamine D2/D3 receptors. Nucl. Med. Biol. 2014;41(5):426–431. doi: 10.1016/j.nucmedbio.2014.01.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Boileau I., Guttman M., Rusjan P., Adams J.R., Houle S., Tong J., Hornykiewicz O., Furukawa Y., Wilson A.A., Kapur S., Kish S.J. Decreased binding of the D3 dopamine receptor-preferring ligand [11C]-(+)-PHNO in drug-naive Parkinson’s disease. Brain. 2009;132(Pt 5):1366–1375. doi: 10.1093/brain/awn337. [DOI] [PubMed] [Google Scholar]
- 101.Caravaggio F., Nakajima S., Borlido C., Remington G., Gerretsen P., Wilson A., Houle S., Menon M., Mamo D., Graff-Guerrero A. Estimating endogenous dopamine levels at D2 and D3 receptors in humans using the agonist radiotracer [(11)C]-(+)-PHNO. Neuropsychopharmacology. 2014;39(12):2769–2776. doi: 10.1038/npp.2014. [Epub ahead of print]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Rosa-Neto P., Gjedde A., Olsen A.K., Jensen S.B., Munk O.L., Watanabe H., Cumming P. MDMA-evoked changes in [11C]raclopride and [11C]NMSP binding in living pig brain. Synapse. 2004;53(4):222–233. doi: 10.1002/syn.20053. [DOI] [PubMed] [Google Scholar]
- 103.Zhang H., Zheng X., Yang X., Fang S., Shen G., Zhao C., Tian M. 11C-NMSP/ 18F-FDG microPET to monitor neural stem cell transplantation in a rat model of traumatic brain injury. Eur. J. Nucl. Med. Mol. Imaging. 2008;35(9):1699–1708. doi: 10.1007/s00259-008-0835-9. [DOI] [PubMed] [Google Scholar]
- 104.Finnema SJ, Stepanov V, Nakao R, Sromek AW, Zhang T, Neumeyer JL, George SR, Seeman P, Stabin MG, Jonsson C, Farde L, Halldin C. 18F-MCL-524 an 18F-Labeled Dopamine D2 and D3 Receptor Agonist Sensitive to Dopamine. A Preliminary PET Study. J. Nucl. Med. 2014;55:1–7. doi: 10.2967/jnumed.113.133876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Verstappen C.C., Bloem B.R., Haaxma C.A., Oyen W.J., Horstink M.W. Diagnostic value of asymmetric striatal D2 receptor upregulation in Parkinson’s disease: an [123I]IBZM and [123I]FP-CIT SPECT study. Eur. J. Nucl. Med. Mol. Imaging. 2007;34(4):502–507. doi: 10.1007/s00259-006-0258-4. [DOI] [PubMed] [Google Scholar]
- 106.Politis M, Piccini P, Pavese N, Koh SB, Brooks DJ. Evidence of dopamine dysfunction in the hypothalamus of patients with Parkinson's disease: an in vivo 11C-raclopride PET study. Exp. Ne rol. 2008; 214:112–116. doi: 10.1016/j.expneurol.2008.07.021. [DOI] [PubMed] [Google Scholar]
- 107.Van Laere K., Clerinx K., D’Hondt E., de Groot T., Vandenberghe W. Combined striatal binding and cerebral influx analysis of dynamic 11C-raclopride PET improves early differentiation between multiple-system atrophy and Parkinson disease. J. Nucl. Med. 2010;51(4):588–595. doi: 10.2967/jnumed.109.070144. [DOI] [PubMed] [Google Scholar]
- 108.Van Laere K., Clerinx K., D’Hondt E., de Groot T., Vandenberghe W. Combined striatal binding and cerebral influx analysis of dynamic 11C-raclopride PET improves early differentiation between multiple-system atrophy and Parkinson disease. J. Nucl. Med. 2010;51(4):588–595. doi: 10.2967/jnumed.109.070144. [DOI] [PubMed] [Google Scholar]
- 109.Steeves T.D., Miyasaki J., Zurowski M., Lang A.E., Pellecchia G., Van Eimeren T., Rusjan P., Houle S., Strafella A.P. Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain. 2009;132(Pt 5):1376–1385. doi: 10.1093/brain/awp054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Hwang D.R., Kegeles L.S., Laruelle M. (-)-N-[(11)C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D(2) receptors. Nucl. Med. Biol. 2000;27(6):533–539. doi: 10.1016/S0969-8051(00)00144-X. [DOI] [PubMed] [Google Scholar]
- 111.Finnema SJ, Seneca N, Farde L, Shchukin E, Sóvágó J, Gulyás B, Wikström HV, Innis RB, Neumeyer JL, Halldin C A. preliminary PET evaluation of the new dopamine D2 receptor agonist [11C]MNPA in cynomolgus monkey. Nucl. Med. iol. 2005; 32:353–360. doi: 10.1016/j.nucmedbio.2005.01.007. [DOI] [PubMed] [Google Scholar]
- 112.Wilson A.A., McCormick P., Kapur S., Willeit M., Garcia A., Hussey D., Houle S., Seeman P., Ginovart N. Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J. Med. Chem. 2005;48(12):4153–4160. doi: 10.1021/jm050155n. [DOI] [PubMed] [Google Scholar]
- 113.Ishibashi K., Ishii K., Oda K., Mizusawa H., Ishiwata K. Competition between 11C-raclopride and endogenous dopamine in Parkinson’s disease. Nucl. Med. Commun. 2010;31(2):159–166. doi: 10.1097/MNM.0b013e328333e3cb. [DOI] [PubMed] [Google Scholar]
- 114.Wimalasena K. Vesicular monoamine transporters: structure-function, pharmacology, and medicinal chemistry. Med. Res. Rev. 2011;31(4):483–519. doi: 10.1002/med.20187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Koeppe R.A., Gilman S., Junck L., Wernette K., Frey K.A. Differentiating Alzheimer’s disease from dementia with Lewy bodies and Parkinson’s disease with (+)-[11C]dihydrotetrabenazine positron emission tomography. Alzheimers Dement. 2008;4(1) Suppl. 1:S67–S76. doi: 10.1016/j.jalz.2007.11.016. [DOI] [PubMed] [Google Scholar]
- 116.Blesa J., Juri C., Collantes M., Peñuelas I., Prieto E., Iglesias E., Martí-Climent J., Arbizu J., Zubieta J.L., Rodríguez-Oroz M.C., García-García D., Richter J.A., Cavada C., Obeso J.A. Progression of dopaminergic depletion in a model of MPTP-induced Parkinsonism in non-human primates. An (18)F-DOPA and (11)C-DTBZ PET study. Neurobiol. Dis. 2010;38(3):456–463. doi: 10.1016/j.nbd.2010.03.006. [DOI] [PubMed] [Google Scholar]
- 117.Okamura N, Villemagne VL, Drago J, Pejoska S, Dhamija RK, Mulligan RS, Ellis JR, Ackermann U, O'Keefe G, Jones G, Kung HF, Pontecorvo MJ, Skovronsky D, Rowe CC. In Vivo Measurement of Vesicular Monoamine Transporter Type 2 Density in Parkinson Disease with 18F-AV-133. J. Nucl. Med. 2010;51:223–228. doi: 10.2967/jnumed.109.070094. [DOI] [PubMed] [Google Scholar]
- 118.Guttman M., Boileau I., Warsh J., Saint-Cyr J.A., Ginovart N., McCluskey T., Houle S., Wilson A., Mundo E., Rusjan P., Meyer J., Kish S.J. Brain serotonin transporter binding in non-depressed patients with Parkinson’s disease. Eur. J. Neurol. 2007;14(5):523–528. doi: 10.1111/j.1468-1331.2007.01727.x. [DOI] [PubMed] [Google Scholar]
- 119.Politis M., Loane C., Wu K., Brooks D.J., Piccini P. Serotonergic mediated body mass index changes in Parkinson’s disease. Neurobiol. Dis. 2011;43(3):609–615. doi: 10.1016/j.nbd.2011.05.009. [DOI] [PubMed] [Google Scholar]
- 120.Bédard C., Wallman M.J., Pourcher E., Gould P.V., Parent A., Parent M. Serotonin and dopamine striatal innervation in Parkinson's disease and Huntington's chorea. 2011. [DOI] [PubMed]
- 121.Sánchez M.G., Morissette M., Di Paolo T. Estradiol and brain serotonin reuptake transporter in long-term ovariectomized parkinsonian monkeys. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013;45:170–177. doi: 10.1016/j.pnpbp.2013.05.008. [DOI] [PubMed] [Google Scholar]
- 122.Huot P., Fox S.H. The serotonergic system in motor and non-motor manifestations of Parkinson’s disease. Exp. Brain Res. 2013;230(4):463–476. doi: 10.1007/s00221-013-3621-2. [DOI] [PubMed] [Google Scholar]
- 123.Brooks D.J., Piccini P. Imaging in Parkinson’s disease: the role of monoamines in behavior. Biol. Psychiatry. 2006;59(10):908–918. doi: 10.1016/j.biopsych.2005.12.017. [DOI] [PubMed] [Google Scholar]
- 124.Doder M., Rabiner E.A., Turjanski N., Lees A.J., Brooks D.J., 11C-WAY 100635 PET study Tremor in Parkinson’s disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology. 2003;60(4):601–605. doi: 10.1212/01.WNL.0000031424.51127.2B. [DOI] [PubMed] [Google Scholar]
- 125.Pavese N., Simpson B.S., Metta V., Ramlackhansingh A., Chaudhuri K.R., Brooks D.J. [¹⁸F]FDOPA uptake in the raphe nuclei complex reflects serotonin transporter availability. A combined [¹⁸F]FDOPA and [¹¹C]DASB PET study in Parkinson’s disease. Neuroimage. 2012;59(2):1080–1084. doi: 10.1016/j.neuroimage.2011.09.034. [DOI] [PubMed] [Google Scholar]
- 126.Politis M., Wu K., Loane C., Kiferle L., Molloy S., Brooks D.J., Piccini P. Staging of serotonergic dysfunction in Parkinson’s disease: an in vivo 11C-DASB PET study. Neurobiol. Dis. 2010;40(1):216–221. doi: 10.1016/j.nbd.2010.05.028. [DOI] [PubMed] [Google Scholar]
- 127.Boileau I, Warsh JJ, Guttman M, Saint-Cyr JA, McCluskey T, Rusjan P, Houle S, Wilson AA, Meyer JH, Kish SJ. Elevated serotonin transporter binding in depressed patients with Parkinson's disease: a preliminary PET study with [11C]DASB. Mov. Disord. 2008;23:1776–1780. doi: 10.1002/mds.22212. [DOI] [PubMed] [Google Scholar]
- 128.Huang W.S., Ma K.H., Cheng C.Y., Chen C.Y., Fu Y.K., Chou Y.H., Wey S.P., Liu J.C. Imaging serotonin transporters with 123I-ADAM brain SPECT in healthy non-human primates. Nucl. Med. Commun. 2004;25(5):515–519. doi: 10.1097/00006231-200405000-00014. [DOI] [PubMed] [Google Scholar]
- 129.Frokjaer V.G., Pinborg L.H., Madsen J. 2008.
- 130. Brust P, Scheffel U, Szabo Z. Radioligands for the study of the 5-HT transporter in vivo. IDrugs. 1999;2:129–145. [PubMed] [Google Scholar]
- 131.McCann U.D., Szabo Z., Seckin E., Rosenblatt P., Mathews W.B., Ravert H.T., Dannals R.F., Ricaurte G.A. Quantitative PET studies of the serotonin transporter in MDMA users and controls using [11C]McN5652 and [11C]DASB. Neuropsychopharmacology. 2005;30(9):1741–1750. doi: 10.1038/sj.npp.1300736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Halldin C., Lundberg J., Sóvágó J., Gulyás B., Guilloteau D., Vercouillie J., Emond P., Chalon S., Tarkiainen J., Hiltunen J., Farde L. [(11)C]MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse. 2005;58(3):173–183. doi: 10.1002/syn.20189. [DOI] [PubMed] [Google Scholar]
- 133.Jovanovic H., Karlsson P., Cerin A., Halldin C., Nordström A.L. 5-HT(1A) receptor and 5-HTT binding during the menstrual cycle in healthy women examined with [(11)C] WAY100635 and [(11)C] MADAM PET. Psychiatry Res. 2009;172(1):31–37. doi: 10.1016/j.pscychresns.2008.07.002. [DOI] [PubMed] [Google Scholar]
- 134.Jarkas N, Votaw JR, Voll RJ, Williams L, Camp VM, Owens MJ, Purselle DC, Bremner JD, Kilts CD, Nemeroff CB, Goodman MM. Carbon-11 HOMADAM: a novel PET radiotracer for imaging serotonin transporters. Nucl. Med.iol. . 2005; , 32:211–224. doi: 10.1016/j.nucmedbio.2004.11.007. [DOI] [PubMed] [Google Scholar]
- 135.Nye J.A., Votaw J.R., Jarkas N., Purselle D., Camp V., Bremner J.D., Kilts C.D., Nemeroff C.B., Goodman M.M. Compartmental modeling of 11C-HOMADAM binding to the serotonin transporter in the healthy human brain. J. Nucl. Med. 2008;49(12):2018–2025. doi: 10.2967/jnumed.108.054262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Suehiro M., Greenberg J.H., Shiue C.Y., Gonzalez C., Dembowski B., Reivich M. Radiosynthesis and biodistribution of the S-[18F]fluoroethyl analog of McN5652. Nucl. Med. Biol. 1996;23(4):407–412. doi: 10.1016/0969-8051(96)00013-3. [DOI] [PubMed] [Google Scholar]
- 137.Zessin J., Eskola O., Brust P., Bergman J., Steinbach J., Lehikoinen P., Solin O., Johannsen B. Synthesis of S-([18F]fluoromethyl)-(+)-McN5652 as a potential PET radioligand for the serotonin transporter. Nucl. Med. Biol. 2001;28(7):857–863. doi: 10.1016/S0969-8051(01)00248-7. [DOI] [PubMed] [Google Scholar]
- 138.Kretzschmar M., Brust P., Zessin J., Cumming P., Bergmann R., Johannsen B. Autoradiographic imaging of the serotonin transporter in the brain of rats and pigs using S-([18F]fluoromethyl)-(+)-McN5652. Eur. Neuropsychopharmacol. 2003;13(5):387–397. doi: 10.1016/S0924-977X(03)00039-7. [DOI] [PubMed] [Google Scholar]
- 139.Marjamäki P., Zessin J., Eskola O., Grönroos T., Haaparanta M., Bergman J., Lehikoinen P., Forsback S., Brust P., Steinbach J., Solin O. S-[18F]fluoromethyl-(+)-McN5652, a PET tracer for the serotonin transporter: evaluation in rats. Synapse. 2003;47(1):45–53. doi: 10.1002/syn.10150. [DOI] [PubMed] [Google Scholar]
- 140.Brust P, Zessin J, Kuwabara H, awelke B, Kretzschmar M, Hinz R, Bergman J, Eskola O, Solin O, Steinbach J. Positron emission tomography imaging of the serotonin transporter in the pig brain using[11C](+)-McN5652 and S([18F] fluoromethyl) (+)McN5652. Synapse. 2003;47:143–151. doi: 10.1002/syn.10163. [DOI] [PubMed] [Google Scholar]
- 141.Brust P., Hinz R., Kuwabara H., Hesse S., Zessin J., Pawelke B., Stephan H., Bergmann R., Steinbach J., Sabri O. In vivo measurement of the serotonin transporter with (S)-([18F]fluoromethyl)-(+)-McN5652. Neuropsychopharmacology. 2003;28(11):2010–2019. doi: 10.1038/sj.npp.1300281. [DOI] [PubMed] [Google Scholar]
- 142.Oya S., Choi S.R., Coenen H., Kung H.F. New PET imaging agent for the serotonin transporter: [(18)F]ACF (2-[(2-amino-4-chloro-5-fluorophenyl)thio]-N,N-dimethyl-benzenmethanamine). J. Med. Chem. 2002;45(21):4716–4723. doi: 10.1021/jm020167y. [DOI] [PubMed] [Google Scholar]
- 143.Huang Y.Y., Huang W.S., Chu T.C., Shiue C.Y. An improved synthesis of 4-[18F]-ADAM, a potent serotonin transporter imaging agent. Appl. Radiat. Isot. 2009;67(6):1063–1067. doi: 10.1016/j.apradiso.2009.02.090. [DOI] [PubMed] [Google Scholar]
- 144.Peng C.J., Huang Y.Y., Huang W.S., Shiue C.Y. An automated synthesis of N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM) for imaging serotonin transporters. Appl. Radiat. Isot. 2008;66(5):625–631. doi: 10.1016/j.apradiso.2007.11.009. [DOI] [PubMed] [Google Scholar]
- 145.Shiue G.G., Fang P., Shiue C.Y. Synthesis of N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine as a serotonin transporter imaging agent. Appl. Radiat. Isot. 2003;58(2):183–191. doi: 10.1016/S0969-8043(02)00271-3. [DOI] [PubMed] [Google Scholar]
- 146.Fang P., Shiue G.G., Shimazu T., Greenberg J.H., Shiue C.Y. Synthesis and evaluation of N,N-dimethyl-2-(2-amino-5-[18F]fluorophenylthio)benzylamine (5-[18F]-ADAM) as a serotonin transporter imaging agent. Appl. Radiat. Isot. 2004;61(6):1247–1254. doi: 10.1016/j.apradiso.2004.03.003. [DOI] [PubMed] [Google Scholar]
- 147.Huang Y., Hwang D.R., Bae S.A., Sudo Y., Guo N., Zhu Z., Narendran R., Laruelle M. A new positron emission tomography imaging agent for the serotonin transporter: synthesis, pharmacological characterization, and kinetic analysis of [11C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine ([11C]AFM). Nucl. Med. Biol. 2004;31(5):543–556. doi: 10.1016/j.nucmedbio.2003.11.008. [DOI] [PubMed] [Google Scholar]
- 148.Garg S., Thopate S.R., Minton R.C., Black K.W., Lynch A.J., Garg P.K. 3-Amino-4-(2-((4-[18F]fluorobenzyl)methylamino)methylphenylsulfanyl)benzonitrile, an F-18 fluorobenzyl analogue of DASB: synthesis, in vitro binding, and in vivo biodistribution studies. Bioconjug. Chem. 2007;18(5):1612–1618. doi: 10.1021/bc070112g. [DOI] [PubMed] [Google Scholar]
- 149.Parhi A.K., Wang J.L., Oya S., Choi S.R., Kung M.P., Kung H.F. 2-(2′-((dimethylamino)methyl)-4′-(fluoroalkoxy)-phenylthio)benzenamine derivatives as serotonin transporter imaging agents. J. Med. Chem. 2007;50(26):6673–6684. doi: 10.1021/jm070685e. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Hesse S., Brust P., Mäding P., Becker G.A., Patt M., Seese A., Sorger D., Zessin J., Meyer P.M., Lobsien D., Laudi S., Habermann B., Füchtner F., Luthardt J., Bresch A., Steinbach J., Sabri O. Imaging of the brain serotonin transporters (SERT) with 18F-labelled fluoromethyl-McN5652 and PET in humans. Eur. J. Nucl. Med. Mol. Imaging. 2012;39(6):1001–1011. doi: 10.1007/s00259-012-2078-z. [DOI] [PubMed] [Google Scholar]
- 151.Huang Y.Y., Ma K.H., Tseng T.W., Chou T.K., Ng H., Mirsalis J.C., Fu Y.K., Chu T.C., Huang W.S., Shiue C.Y. Biodistribution, toxicity and radiation dosimetry studies of the serotonin transporter radioligand 4-[18F]-ADAM in rats and monkeys. Eur. J. Nucl. Med. Mol. Imaging. 2010;37(3):545–555. doi: 10.1007/s00259-009-1281-z. [DOI] [PubMed] [Google Scholar]
- 152.Ma K.H., Huang W.S., Kuo Y.Y., Peng C.J., Liou N.H., Liu R.S., Hwang J.J., Liu J.C., Chen H.J., Shiue C.Y. Validation of 4-[18F]-ADAM as a SERT imaging agent using micro-PET and autoradiography. Neuroimage. 2009;45(3):687–693. doi: 10.1016/j.neuroimage.2008.12.060. [DOI] [PubMed] [Google Scholar]
- 153.Huang W.S., Huang S.Y., Yeh C.B., Ma K.H., Wang H.S., Peng C.J., Shiue C.Y. 18F-ADAM PET in healthy and drug-naïve depressant subjects. J. Nucl. Med. 2007;48(Suppl. 2):261. [Google Scholar]
- 154.Huang Y.Y., Huang W.S., Ma K.H., Chou T.K., Kuo Y.Y., Cheng C.Y., Shiue C.Y. 2012.
- 155.Li I.H., Huang W.S., Yeh C.B., Liao M.H., Chen C.C., Shen L.H., Liu J.C., Ma K.H. Dual-isotope single-photon emission computed tomography for dopamine and serotonin transporters in normal and Parkinsonian monkey brains. Nucl. Med. Biol. 2009;36(6):605–611. doi: 10.1016/j.nucmedbio.2009.03.003. [DOI] [PubMed] [Google Scholar]
- 156.Nobili F., Morbelli S., Arnaldi D., Ferrara M., Campus C., Brugnolo A., Mazzei D., Mehrdad N., Sambuceti G., Rodriguez G. Radionuclide brain imaging correlates of cognitive impairment in Parkinson’s disease (PD). J. Neurol. Sci. 2011;310(1-2):31–35. doi: 10.1016/j.jns.2011.06.053. [DOI] [PubMed] [Google Scholar]
- 157.Oishi N., Hashikawa K., Yoshida H., Ishizu K., Ueda M., Kawashima H., Saji H., Fukuyama H. Quantification of nicotinic acetylcholine receptors in Parkinson’s disease with (123)I-5IA SPECT. J. Neurol. Sci. 2007;256(1-2):52–60. doi: 10.1016/j.jns.2007.02.014. [DOI] [PubMed] [Google Scholar]
- 158.Bucerius J., Manka C., Schmaljohann J., Mani V., Gündisch D., Rudd J.H., Bippus R., Mottaghy F.M., Wüllner U., Fayad Z.A., Biersack H.J. Feasibility of [18F]-2-Fluoro-A85380-PET imaging of human vascular nicotinic acetylcholine receptors in vivo. JACC Cardiovasc. Imaging. 2012;5(5):528–536. doi: 10.1016/j.jcmg.2011.11.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Colloby S.J., Pakrasi S., Firbank M.J., Perry E.K., Piggott M.A., Owens J., Wyper D.J., McKeith I.G., Burn D.J., Williams E.D., O’Brien J.T. In vivo SPECT imaging of muscarinic acetylcholine receptors using (R,R) 123I-QNB in dementia with Lewy bodies and Parkinson’s disease dementia. Neuroimage. 2006;33(2):423–429. doi: 10.1016/j.neuroimage.2006.07.026. [DOI] [PubMed] [Google Scholar]
- 160.Gerhard A., Pavese N., Hotton G., Turkheimer F., Es M., Hammers A., Eggert K., Oertel W., Banati R.B., Brooks D.J. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 2006;21(2):404–412. doi: 10.1016/j.nbd.2005.08.002. [DOI] [PubMed] [Google Scholar]
- 161.Shimada H., Hirano S., Shinotoh H., Aotsuka A., Sato K., Tanaka N., Ota T., Asahina M., Fukushi K., Kuwabara S., Hattori T., Suhara T., Irie T. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology. 2009;73(4):273–278. doi: 10.1212/WNL.0b013e3181ab2b58. [DOI] [PubMed] [Google Scholar]
- 162.Bohnen N.I., Kaufer D.I., Ivanco L.S., Lopresti B., Koeppe R.A., Davis J.G., Mathis C.A., Moore R.Y., DeKosky S.T. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch. Neurol. 2003;60(12):1745–1748. doi: 10.1001/archneur.60.12.1745. [DOI] [PubMed] [Google Scholar]
- 163.Ochudło S., Opala G., Jasińska-Myga B., Siuda J., Nowak S. [Inferior frontal region hypoperfusion in Parkinson disease with dementia]. Neurol. Neurochir. Pol. 2003;37(Suppl. 5):133–144. [PubMed] [Google Scholar]
- 164.Leenders K.L. Significance of non-presynaptic SPECT tracer methods in Parkinson’s disease. Mov. Disord. 2003;18(Suppl. 7):S39–S42. doi: 10.1002/mds.10577. [DOI] [PubMed] [Google Scholar]
- 165.Wallin A., Ekberg S., Lind K., Milos V., Granérus A.K., Granerus G. Posterior cortical brain dysfunction in cognitively impaired patients with Parkinson’s disease--a rCBF scintigraphy study. Acta Neurol. Scand. 2007;116(6):347–354. doi: 10.1111/j.1600-0404.2007.00887.x. [DOI] [PubMed] [Google Scholar]
- 166.Ikawa M., Okazawa H., Kudo T., Kuriyama M., Fujibayashi Y., Yoneda M., Ikawa M., Okazawa H., Kudo T. Evaluation of striatal oxidative stress in patients with Parkinson’s disease using [62Cu]ATSM PET. Nucl. Med. Biol. 2011;38(7):945–951. doi: 10.1016/j.nucmedbio.2011.02.016. [DOI] [PubMed] [Google Scholar]









