Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jul 19;91(15):6780–6786. doi: 10.1073/pnas.91.15.6780

Tempo and mode in human evolution.

H M McHenry 1
PMCID: PMC44283  PMID: 8041697

Abstract

The quickening pace of paleontological discovery is matched by rapid developments in geochronology. These new data show that the pattern of morphological change in the hominid lineage was mosaic. Adaptations essential to bipedalism appeared early, but some locomotor features changed much later. Relative to the highly derived postcrania of the earliest hominids, the craniodental complex was quite primitive (i.e., like the reconstructed last common ancestor with the African great apes). The pattern of craniodental change among successively younger species of Hominidae implies extensive parallel evolution between at least two lineages in features related to mastication. Relative brain size increased slightly among successively younger species of Australopithecus, expanded significantly with the appearance of Homo, but within early Homo remained at about half the size of Homo sapiens for almost a million years. Many apparent trends in human evolution may actually be due to the accumulation of relatively rapid shifts in successive species.

Full text

PDF
6780

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gould S. J. Allometry in primates, with emphasis on scaling and the evolution of the brain. Contrib Primatol. 1975;5:244–292. [PubMed] [Google Scholar]
  2. Gould S. J., Eldredge N. Punctuated equilibrium comes of age. Nature. 1993 Nov 18;366(6452):223–227. doi: 10.1038/366223a0. [DOI] [PubMed] [Google Scholar]
  3. Hofman M. A. Encephalization in hominids: evidence for the model of punctuationalism. Brain Behav Evol. 1983;22(2-3):102–117. doi: 10.1159/000121511. [DOI] [PubMed] [Google Scholar]
  4. Holloway R. L. Human paleontological evidence relevant to language behavior. Hum Neurobiol. 1983;2(3):105–114. [PubMed] [Google Scholar]
  5. Johanson D. C., White T. D. A systematic assessment of early African hominids. Science. 1979 Jan 26;203(4378):321–330. doi: 10.1126/science.104384. [DOI] [PubMed] [Google Scholar]
  6. Latimer B., Lovejoy C. O. Hallucal tarsometatarsal joint in Australopithecus afarensis. Am J Phys Anthropol. 1990 Jun;82(2):125–133. doi: 10.1002/ajpa.1330820202. [DOI] [PubMed] [Google Scholar]
  7. Latimer B., Lovejoy C. O. Metatarsophalangeal joints of Australopithecus afarensis. Am J Phys Anthropol. 1990 Sep;83(1):13–23. doi: 10.1002/ajpa.1330830103. [DOI] [PubMed] [Google Scholar]
  8. Latimer B., Lovejoy C. O. The calcaneus of Australopithecus afarensis and its implications for the evolution of bipedality. Am J Phys Anthropol. 1989 Mar;78(3):369–386. doi: 10.1002/ajpa.1330780306. [DOI] [PubMed] [Google Scholar]
  9. Leigh S. R. Cranial capacity evolution in Homo erectus and early Homo sapiens. Am J Phys Anthropol. 1992 Jan;87(1):1–13. doi: 10.1002/ajpa.1330870102. [DOI] [PubMed] [Google Scholar]
  10. Lovejoy C. O. Evolution of human walking. Sci Am. 1988 Nov;259(5):118–125. doi: 10.1038/scientificamerican1188-118. [DOI] [PubMed] [Google Scholar]
  11. Martin R. D. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature. 1981 Sep 3;293(5827):57–60. doi: 10.1038/293057a0. [DOI] [PubMed] [Google Scholar]
  12. McHenry H. M. Body size and proportions in early hominids. Am J Phys Anthropol. 1992 Apr;87(4):407–431. doi: 10.1002/ajpa.1330870404. [DOI] [PubMed] [Google Scholar]
  13. McHenry H. M. Fossils and the mosaic nature of human evolution. Science. 1975 Oct 31;190(4213):425–431. doi: 10.1126/science.809842. [DOI] [PubMed] [Google Scholar]
  14. McHenry H. M. Relative cheek-tooth size in Australopithecus. Am J Phys Anthropol. 1984 Jul;64(3):297–306. doi: 10.1002/ajpa.1330640312. [DOI] [PubMed] [Google Scholar]
  15. McHenry H. M. The capitate of Australopithecus afarensis and A. africanus. Am J Phys Anthropol. 1983 Oct;62(2):187–198. doi: 10.1002/ajpa.1330620208. [DOI] [PubMed] [Google Scholar]
  16. Passingham R. E. Rates of brain development in mammals including man. Brain Behav Evol. 1985;26(3-4):167–175. doi: 10.1159/000118773. [DOI] [PubMed] [Google Scholar]
  17. Pilbeam D., Gould S. J. Size and scaling in human evolution. Science. 1974 Dec 6;186(4167):892–901. doi: 10.1126/science.186.4167.892. [DOI] [PubMed] [Google Scholar]
  18. Schmid P. Eine Rekonstruktion des Skelettes von A.L. 288-1 (Hadar) und deren Konsequenzen. Folia Primatol (Basel) 1983;40(4):283–306. doi: 10.1159/000156111. [DOI] [PubMed] [Google Scholar]
  19. Stern J. T., Jr, Susman R. L. The locomotor anatomy of Australopithecus afarensis. Am J Phys Anthropol. 1983 Mar;60(3):279–317. doi: 10.1002/ajpa.1330600302. [DOI] [PubMed] [Google Scholar]
  20. Susman R. L., Stern J. T., Jr, Jungers W. L. Arboreality and bipedality in the Hadar hominids. Folia Primatol (Basel) 1984;43(2-3):113–156. doi: 10.1159/000156176. [DOI] [PubMed] [Google Scholar]
  21. White T. D. Evolutionary implications of pliocene hominid footprints. Science. 1980 Apr 11;208(4440):175–176. doi: 10.1126/science.208.4440.175. [DOI] [PubMed] [Google Scholar]
  22. Wood B. Origin and evolution of the genus Homo. Nature. 1992 Feb 27;355(6363):783–790. doi: 10.1038/355783a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES